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Abstract

The involute function ¢ = tan¢ — ¢ or £ = inv, and the inverse
involute function ¢ = inv=!(c) arise in the tooth geometry calcula-
tions of involute gears, involute splines, and involute serrations. In
this paper, the explicit series solutions of the inverse involute func-
tion are derived by perturbation techniques in the ranges of le] < 1.8,
1.8 < |¢] < 5, and [¢] > 5. These explicit solutions are compared with
the exact solutions, and the expressions for estimated errors are also
developed. Of pasticular interest in the applications are the simple ex-
pansion ¢ = inv™! (¢} = (3¢} - 2¢/5 which gives the angle ¢(< 45°)
with error less than 1.0% in the range of £ < 0.2135, and the economized
asymplotic series expansion ¢ = inv™! (£) = 1.440859¢%/° — 0,3660584¢
which gives ¢ with error less than 0.17% in the range of ¢ < 0.215. The
four, seven, and nine term seties solutions of ¢ = inv=!(¢) are shown
to have error less than 0.0018%, 4.89+ 10-* %, and 2.01+ 10~7% in the
range of ¢ < 0,215, respectively. The computation of the series soly-
tion of the inverse involute function can be casily performed by using
a pocket calculator, which should Jead to its practical applications in
the design and analysis of involute gears, splines, and serrations.

1. Introduction

The _involute curve is most widely used for the tooth shape of
gears, splines, and serrations. In Fig.1, the involute curve BC in gen-|
erated with respect to the base circle with radius ry such that the
length of the normal AP equals the length of the arc AB. We can|
derive the parametric expression for the involute curve BC as l'al]owsi
{Mabie antf Reinholtz, 1987; Paul, 1979; Shigley and Uicker, 1980),

et S "

If the pressure angle ¢ is known, inv¢ can be readily determined. But,
in many applications, the values of £ = invé is usu y known while the
pressure angle ¢ is to be found. This problem arises quite often in the
gear tooth geometry calculations such as in the determinations of the
nen-standard center distance, non.standard pin dimensions, and out-
side radius of the pinion at which the tooth becomes pointed, offseta
for cutting non-standard gears with teeth of equal strength, and min-
imum achievable quality in generation processes and maximum pro-
file heights of spur gears (Green and Mabie, 1950; Mabie and Rein-
holtz, 1987; Sankaranarayanasamy and Shunmugam, 1988; Shigley and
Uicker, 1980); as well as in the measnrement of threads over wires. The
calcylatione of th? inverse involute function are also involved jn the
sevolute function for involute splines a.n'c:l serrations suc’l!l as in findin

the measurement between pins for the maximum actual space width o
an internal spline and for the minimum actual space width of an exter-

nal spline (Amiss et al., 1984, pp, 147-154; Ryffel, 1984, pp. 895.927).

ion js d d as the diff: bet the secant of
oS oeyotutg fynction fa defined as the differance (Ryftel, 1984, 5. 56

seve = sec ¢ — inveg {2)

Obviously, no exact solution for ¢ = inv='(£) can be expreseed
explicitly in terms of elementary functicns of £. Due to the lack of
euwstence of the explicit solution of the inverse invalute function, some
mechanism textbeoks (Shigley, 1969, for 0* < ¢ < 45°; Shigley and
Uicker, 1980; for 0° < ¢ < 45°; Mabie and Reinholtz, 1987, for 0* <
¢ < 60°) and design handbooks (Huckert, 1956, for 0° < ¢ < 62°;
Parmiley, 1985, for 10° < ¢ < 40°; Ryffel, 1984, for 0° < ¢ < 90}
usually give an extensive table of (4,invé) from which inv-!(c) can

Figure 1 Base circle and involute curve,




be linearly interpolated. In order to get more accurate results, higher
order interpolations are required. Another commonly used method to
obtain ¢ for the given £ = inv¢ is to use iteration methods such as the
following Newton's algorithm (Gerald and Wheatley, 1984)

- e—tang, + 4, -
Pat1 = b + B T 01,2, (3)
where the value of £ is known, ¢, is the previously iterated value, and
¢4y is the currently iterated value, It has been pointed out by Thoen
(1988) that the above iterative algorithm js susceptible to divergence
depending on the initial guess ¢ and the range of final value of ¢.

One way to obtain the good initial value ¢y for the iteration al-
gorithm may be through the look-up tables of (¢,invé). But, this
is not convenient, especially, when a large number of inverse involute
function calculations are required. For example, the determination of
pinion-cutler offsets required to produce nonstandard spur gears with
teeth of equal sttenglh({Green and Mabie, 1980; Mabie and Reinholtz,
1987) and the determination of the minimum achievable quality in gen.
eration processes and maximum height of the profile for a given gear
(Sankaranarayanasamy and Shunmugam, 1988) require a great deal of
computations of the inverse involute function. The frequent manual
intetruptions of the computer program for the table loop-ups are too
involved; and an efficient method, without susceptible to divergence,
for the solution of the inverse involute function is strongly desired in
such cases sa that computational power of a computer can {e fully uti-

lized, An efficient and reliable method for the solution of the i
involute I}unu:l.ion may a.‘:cl: Ee 3£}reﬂ for g;nergﬁ?l; nlgﬁ-:tand%}:l‘:;epr:?

gears and involute splines by using CAD/CAM systems.
In this paper, the complete explicit expressions for ¢ in terms of
€ = inve are detived by perturbation techniques. The value of the
ressure angle ¢ is usually less than 45° in engincering applications,
or which Lhe developed explicit formula for the pressure angle ¢ has
error less than 1.58 « 10-° radian. The explicil formula of ¢ with its
value less than 45° has been reported in (Cheng, 1987). Sometimes,
the pressure angle ¢ may lie between 45° < @ < 60°, for which the er-
ror of the explicit formula for ¢ is less than 2.52 « 10~¢ radian. Taking
the potential accuracy of manufacturing into account, the accuracy
provided by the explicit formula developed in this paper should be
salisfactory for practical applications. It chould be pointed out that
what distinguishes the solution metho ted in this paper from
all currently existing methods are its rative and explicit na-
tures. Since the solution of ¢ is formulai.u explicitly, unlike iteration
methods, the computation of the explicit formula doesn’t have diver-
gence problem and is more convenient and efficient. Furthermore,
the solution from the first two terms of the explicit formula of the
inverse involute function for involute gearing applications is as accu-
rate as that through linear interpolation of extensive tables of involute
function, and the two-term formula is simple and can be remembered
casily. Hence, the teaching and learning procedure of involute gearing
of a mechanical design class may be facilitated by using the explicit
direct and inverse involute formulas derived in this paper, and these
simple formulas may make the inclusion of lengthy extensive tables of
the involute function as appendices in many oulstandin% mechanism
textbooks (Shigley, 1968, for 0* < ¢ < 45°; Shigley and Uicker, 1980;
for 0° < ¢ < 45°; Mabie and Reicholtz, 1987, for 0° < ¢ < 60°)
unneccessary.

2. Approximation ef inv=*(c) when || < 1
2.1 Approximation by Asymptotic Series

The involute pressure angle ¢ is usually less than 7 /4 when the
involute curve is used as the tooth curve of spur gears, aplines, and
serrations. Since inv(x/4) = tan(x/4) ~ xf4 ~ 0.215, the solution
obtained in this section is useful for tooth geometry calculations. For
convenience, let € = invg and z = ¢, then Eq.{1) becomes

tanz -z =g, e 1. (4)
Since tanz ~ z = f{z) is an odd function of z, we can consider only
the case when £ > 0, but the result will be valid for ¢ < 0 as well.

Let y1 = tanz,yr = x4 ¢; then, the solution of Eq.{4) for the
ven € is the intersection of the curves of y; and y; as shown in
ig.2 . There are infinite solutions of # corresponding Lo a given value
of ¢ in Eq.{4). We only consider the solutions which lie within z €
(-=/2,7/2). However, the following method can be easily extended
for the interval z € (00,00}, When |z| < x/2, the Taylor series
expansion of tan r is

.
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where B, is the Bernoulli's constant. Substituting the expression of
tanz in Eq.(5) into Eq.{4), we get

1, 2, 17, &,
3% YT Tt togmt too=e (6)

Let the solution to the above nonlinear equation be the following
asymptotic series

as €— 0%, (7

z(e) ~ f: 5n(€)zul

where 6,41 eﬂ‘ < ba(c), as ¢ — 0*. For more information about per-
turbation techniques and properties of the asymptotic series, Bender
and Orazag (1978), Kevorkian and Cole (1981), and Nayfeh (1981)
should be consulted. In the following presentation, the first four terms
of the asymptotic series of z(¢) in Eq.(7) are derived. Eq.(7) can be
written explicitly as

z{e) ~ 21 + 6335 + 612y + 62y + 0(63), (8)
where &;'s are functions of £, and both § and z; are to be determined.

Substituting Eq.(8) into Eq.(6), we get

1
5[513: + 8z + bazy + Sozy +0(5)P + %[5131 + -

7 & (@)

+ 3]5[6131 +___]T + m[&,:l + ooo]' +..-~ £,

or
%{[(6‘ o +6:21) + 3821 + 631) (633) + 0(6:63)]

+[3(d121 + 5323 + 8123 (B )] + [0(6:61)))
+ % ({8121 + 632:)" + 6(6131 + 622:)*(6173) + O(6383)]



+5(01zy + f322 + 6323)' (Biz,) + O(8) 6))) (10)
{[(dsz0 + 6:22) + T(Buzy + b33 (b370) + 0(8} 83)]
+0(874,)}
((12:)" +0(5181)) + 0(8}*) ~ .

17

+ 315

62

u 2835

For brevity, we define the neglected term as 0(h). Expanding Eq.(10)
again, we get
%[[(5131 ) + 30z ) (b12:) + Hbrz Néaxa) + (B17a)Y)

+ 3531 ) + 2(6121)2(8222) + (6171 ) )(bazs)
+3(621) (Jazi ) + 0(h)}

+ 1—25{[(5.;:, P+ 5(6,20) (6122) + 100831 ) (B 23 ) + O(h)]
+ 5(62) ) (8ax;) + O(h))
{[(6:21)" + 78121 )* (8221) + O(h)]
+ (6 ) (Biz) + 0{h)}
(8121 + O(h)} + 0(h) ~&.

17
T
62

y 2835

Comparing the order on the both sides of Eq.(11), we can obtain the
following results by using the dominant balance method (Bender and
Orszag, 1978):

{i) ord(6})=ord(e):

then 8 =e, or 6 =B,
Setting the coefficient of &} equal to the coefficient of « in Eq.{11), we
get
l:|::' =1
3T

or r,=3"R - p=g1,2
According to Fig.2, we only consider the real root, hence
2, = 3P
(ii) ord(8}6;) = ord(8}) = ord(*? ):
then 816, =6}, or & =68 =¢.

' Because the coefficient of £*/* in Eq.(11) is zero, we get

1 2
|‘ 5(3:}:,) + E:: =0,
|
]

2, 2
o ms-gr=-—c,

(iii) ord(8,6}) = ord(8}4y) = ord(6{6;) = ord(8]) = ord(e™* );
then 66 =48], or & =6 =,
Setting the coefficient of €' in Eq.(11) to zero, we get

1 2 17
5(3213: + 33:13) + 3(53133) + m:{ =40,
or
B 2 17 9
7y =~(z7'z} + 5===: + m’f) = ml‘"’
(iv) ord(8) = ord(686) = ord(8}8l) =
=ord(876;) = ord(6]4,) = ord(8}) = ard(e):

then &8, =6, or & =4 =P,

ord(8{4,)

Following the same procedure as shown above, we can get

|

|
1 2

! 5(:? + 61337y 4+ 32iz) + Ts—(l'ﬂ:'}:} +5z)1,)

17
315 2835

Substituting zy = 3"z, = -2/5,2; = 9+ 3%/ /175 into the above
equation, we obtain

+

2 .n
W=

The asymptotic series z(€) = inv™" () in Eq.(8) becomes

2 9 2
13 .13 /3 313 Us_ms 4 .
z(e)~ e 55-!-1753 € 1753 e 4 (1)

-]
of  z(e)~ Y apet-ln (13)
nml
where ay =370y = —},ay = {3 g, = =333, etc. The
coeflicients of higher order terms can be derived in Lhe same manner or
by using computer symbolic manipulation sofiware. The asymptotic
series (13) has the following property

N
z(e) - Z G“E(la-l)ﬂ < aNE(IN-‘I)ﬂ , as £— 0%, VN (14)

nm=j

or, alternatively

N
z(e) - Z a, glin=2f3 an4s 1N+ , a8 £— 0% VN, (18)

nwm|

Therefore, we can define the asymptoltic solution zx(c) and the es-
timated error Ey(c) either by ay V=113 (laose) or ay.,, eV +1)/3
{precise) as follows.

zy(e) ~ PP _ %s
(16)
Eife) ~ 1"?'53"’ S
zo(e) ~ B3I %e + Tgs;,m £ _ 1%531:: £
L Ept 38 g np _ 49711 ap g
57375 3'1;%'1'25 T53278125 an

L3112 s 5169650643 i3 11

By(e) ~ 5169659%:51 333 A1)

In Table 1, we compare the asymptotic solutions z,(e), zo(¢) and the
estimated errors Ey(c), £y(e) with their exact values. The exact so-
lutions are obtained by evaluating tanz — x = £ directly by using an
[BM 3081K with the Fortran program written in the double precision
mode. Fo clarity, only the first three significant digits of the exact
value € are given in Table 1 and the following tabﬁ:s. From Table
1, we can see that Ey{c) is a good approximation of the exact error;
i.e., anyy e@¥H3 jg 3 better error expression than aye¥-W3 for

2(e) - L., auel™™=/3 | In Table 1, the exact error is defined as

Euctemor = |exact inv=!(c) - asymptotic inv='(g)|  (18)

It should be pointed out that the exact error should be always less
than the corresponding estimated error, The errors using the formula
17) is extremely small when ¢ < 10°; the dominant errors in the
ourth column of Table 1 is the round-off errofs of varjables because the
oaling-point numbers expressed in t?le Joume precision mode in the
computer can only carry 15 significant digits. From Table I, we can see
that the asymptotic solution z;(¢) is a good approximation when lef <
0.05, corresponding to ¢ = 30°; and z4(¢) matches the exact solution
well. For the large value of €, zy(¢) is still a good approximation of z
even when 1 < £ < 0o. By using expressions for estimated errors £y (¢)
and Ey(c), one can predict the errors a prior, j.e., before calculating
the asymptotic solutions.
Note that the errors of asymptotic solutions z;(c) and z,(¢) are
less than 1.0% and 2.01 « 10-7 %, respectively, when ¢ < x/4, and
the maximum error occurs at ¢ = x/4; these percent errors are the



Table 1: Comparison of z(¢) = inv™'{e) and estimated errors E{) with their exact values for lel €1

Ey (radian) E3 (radian)
€= inV{Zexact) [Presact zg(€} z3(e) —
Eu.-ael Eulimnl: Eu-uri Eulimnh

177 10-8 I° 1°0.00" { 115« 10-'¢ | 2,80« 10-%7 1°0.00% | 278« 10=" § 2784+ 10~
2.224 104 5° 5°0.00" | 8.74«10°'% | 224410-2% | 4°50'50.08" 8.72+ 108 8.724 108
1.79+ 102 10¢ 10°0.60" | 971« 10-'7 | 310+ 107 | 9°50'50.42" 283+ 10-8 283« 10-°
6.14+ 103 15° 15°0.00" | 8.33+10°'7 [ 3.33+10-17 | 14°59’55.47" 220« 10-*% 2214 10°%
147+ 10-2 20° 20°0.00" | 0.00 5.03+ 10-1% | 19°59'42 27~ 9.57 « 10-3 0.66+ 1072
3.00«10-? 25° 25°0.00" | 5.75+ 10-'* | 2.63«10-'* | 24°58'57.14" 305+« 104 3084105
536102 30° J0°0.00" | 226107 | 72141017 | 20°5714.84" 8.01+ 10~ 8.194+ 104
8.93. 1072 35° 35°000" | 597+ 10-'7 | 1.28+10-19 | 34°53'38.417 1.85+10-2 1914 j0=3
1.41 « 10~! 40° 40°0.00" | 1.09+10-" | 1.714 10-° | 39°46'33.56" 391102 4.08 « 10-7
2.15« 10~ 45° 45°0.00" | 1.58« 10=" | 1.84+10-% | 44°33°19.32" 7.76 « 103 8.27+ 1072
391+ 10-1 50° 50°0.00" | 1.97«10% | 1.74+10-7

4.68+ 10-1 55° 55°0.05" | 226«10~7 | 1.53+10-%

6.85 « 10~! 60° 60°0.52" | 2.52.10-% | 1.32¢10-5

1.01 65° 65°6.05" | 2.93+10-% | 1.1910-*

1.51 T0° ] 70°1°20.70" | 3.914 101 | 1.24+10-2

182 T2* | TI4'3.58" | L18e«10-F | 33741077

maximum error in ¢ expressed as a percentage of the range of $. This
accuracy is satisfactory for tooth geometry calculations.

2.2 Economization of Asymptotic Series by Chebyshev Polynomials

To improve the accuracy of the two term approximation z;(¢),
we can apply the process of series economization to z(e) in Eq.(13) by
using shifted Chebyshev polynomials. As an example, the four-term
asymptotic series in Eq.(12) is economized to a two-term expression

as follows, When ' is factored out, Eq.(12) becomes

2 9 2
a1 _ 2,310 3 60 _ 1/3 403
z4(e) ~ e (2 e+ 1753 £ T o (19)
Let ¢ = ¢! then, Eq.(19) becomes
2 9 2
- 1 _ < 23 _ ey
zq(t) ~ V(3 st Y - I } (20)
Define
2 9 2
=3 _ 2 S qnp 1/3 2
Pi)y=3 RRATAME TR (21)

we can use Chebyshev polynomials to economize the power serics P(t)
(Abramowitz and Stegun, 1970; Cheney, 1982). Since the particular
interest to engineering applications is in the range of ¢ € (0,45%),
corresponding to ¢ € (0,0.215) and ¢ = ' ¢ (0, 16:!). we use shifted

Chebyshev polynomizals to get the final result as follows.
3![.‘! 3][.‘] 2 1 3![3 31]3
= (71 _ _(s_ s
Pit)=(3 1400 + 15120) (5 175 y 840
g i i
(1400 ~ Toea0) T 75600 2 (22)
Where T.'s are the terms of Chebyshev polynomials
with ||l < 1
33 qin 2 3433 ain
= (3 2 —(£_ iy
= £ (3 1400 E 15120) (5 175 + 840 )‘ (23)
32 EUL n
- <(ie = A
Then P = RO < (3355 - 12500 Tl + 75555 51
< ( 33[3 3![3 31[! (24)
= \Ta00 ~ 12600’ * 75000

< 1.390387 » 1077

Therefore, the following economized asymptotic scries solution can be
obtained

0.0t

Error (rad.)
0.00

-0.01

0 45 ¢(deg.)

Figure 3 Comparison of the estimated and exact errors of the econ-
omized asymptotic solution zs, for 0 < ¢ < 45° with the exact error
E; of the simple expansion z,(e).

o) ~ P P(1) ~ P PP

3!]1 3][3 2 34310 31/3
173 — - 13 - - 25
(8" — 776 + 11300 G-+t &

~ 1.440859:'/? - 0.3660584¢.
The expression for the estimated error can be derived as follows
e (€) = ||z — =i ()]
< llz = zo(e)ll + llza(e} - =2 (el

2R (a"’ T (26)
175 1400 ~ 15120

~ 1,390387 + 102 ¥/* 4 0.0164828¢7/%

If we only consider the range of ¢ € (0,35°) for ¢ € (0,0.1) and ¢ =
e!P € (0,0.2), following the same derivation as shown above, we can




get the :3
eslimated error as follows.

{ P () ~ 1.44173563 — 0.379223¢

E}(€) ~ 0514274 & 10~ ¢'? 4 0.0164828¢7/3

proximate solution and the corresponding expression for the

(27)

In Table 2, we compare the economized asymptotic solutions 23} (¢),

zii(e}) and the

estimated

errors

Ej(e), B4 (e)

with

The details of the derivation for 6; and y; are given in Appendix
A. The final results for = = inv='(¢) and error E{£) are as follows:

al@)~ G-t -G+ E+IGP + 2L

-[(5y = +%§]?I-+---.

their exact values. From Table 2, we can see that when ¢ is within the
interval (0,35%), z}}(e) is more accurate than z§5(¢). Doth the exact
error Ej? and estimated error Ef¥(c) are compared with the exact er-
ror £ of the simple expansion z,(e} = (3¢)'/* — 2¢/5 in Fig.3, where
the error is defined as

Ei‘: = Tezact — :;: (5) (28)

The improvement of the accuracy is obvious.

3. Approximation of inv='(£) when |¢| > 1

When ¢ = invg becomes large, the asymplotic approximate so-
lution (18) or (17) will fail, and we have to seck another expression
for the solution of inv=!(c). According to Fig. 2, when ¢ approaches
infinity, z will approach r/2. Let

n=1/e=1finvg, ¢d=z, n<i, (29)
z=xf2-y, y=m/2-z, p<1, (30)
then Eq.(4) becomes
x x 1
(-9 - (F-9)=1, o)
n(cuty+y-’-2r) =1 (32)
Expanding cot y in the Taylor series for 0 < |3 < r, we get
_1 1 2 2 B, yv -t
Cty=yo I EY Tt - ST @ap e (9)
Substituting Eq.(33) into Eq.(32), we get
1 1 1, 2 4 T o_
n[(y WomY v - )+v—§]—1. (34)
Let the asymptotie solution of Eq.(34) be the perturbation series
o
v=2 b(nyn, a8 n—0*, (35)

B(e)~ (g ++ + )4

In order to satisfy the condition of asymptoticity: &, ¥, > Sps1 Yuss .
as 7= 0%, ie., £ — +oo. Lot

1 n
"y > "t /2 or £E=—> y—“ a7
n ¥n
Writing expression (37) explicitly, we get
h_x
£ w3
h _ ‘l’”4+2/3 -
£ » o ®2 " .
w_ ©/84rx
€ > =TT o
and £ LY
¥

The computer results in Table 3 show that when € = 1/p > 5, the
asymptotic solution (36} is 2 good approximation of the exact solution
of inv=?(¢). The bigger the value of £, the more accurate is the asymp-
totic solution. But when ¢ € (72°,81*), both asymptotic lormulae (17)
and (36) derived so far are not good approximations. Therefore, we
need to develop another asymptotic solution for ¢ = inv~'(¢) which
will be accurate for the intermediate values of ¢,

4. Approximation of inv™'(c) when |¢| ~ 1

We seek asymptolic solution when ¢ is about 75° or 5212 and
inv{5x/12) s 2.42. Let

{ =inv(¢) - inv(5x/12), z=z45x/12, (z 1. (38)
Substituting Eq.(38) into Eq.(4), we get
Saln (13 )T TN tan(5%/12) = (. (39)

1 ~tan(5x/12) tan z
Since inv(¢) = 2, tan(5x /1) tan z <ord(1), and Eq.(39) becomes

where &, (n) < ord(1) and 6, (7)yn 3 buss (M)¥ner s 25 g — OF,

-

(tan % +tanz) ) (tan
n=i

5t
12

Table 2: Comparison of z;.(¢) = inv~"' (¢) and estimated errors
E.(¢) alter series economization with their exact values for le] € 1

z tanz)"—z-ta.nﬂ: .

E3% (radian) E3% (radian)

£= in¥(Zeyact) [Feraer 2 H 333

Euui Eulimall Eu-ul Enlimclt
177 10-8 1° 59'56.54" 1.68 « 10~ 1.68 + 10-5 50°'58.72" 6.19+ 10-¢ 6.22 107¢
222+ 10" 5° 4°59'44.17" T68+10°5 | B.42¢10-5 4°58'54.51" 266+10~% | 3.11410°%
1.79+ 102 10¢ 9°59°37.13" I.11+ 104 1.69» 10-1 9°59'64,22" 2,80« 108 6.25« 108
6.14» 1077 15° 14°59'45.98" 6.80 « 103 255+ 104 15%0°2.39" ~1.16 » 10-% 9.43+10°8
14T« 1072 200 20°14.04" —6.81 » 103 343+ 101 20°(r18.04" ~8.75¢ 108 1.27 « 104
3.00 « 10-2 25° 25°0°57.00" —2.81 « 10-4 137+ 10-1 25°0/32.65" -1.58 « 10~4 1646104
536+ 107 30° Jo*1'42.92" —4.99+ 1074 543101 20°0°25.16" =1.22+ 104 212+ 1074
8.93«10-7 35° 35°1'55.68" ~5.61 ¢ 101 6.80 10714 34°50°13.87" 224« 101 2.80 + 10-4
L41s 10! 40° 10°0'31 22" —1.51 « 10-4 8.04 « 10-4
2.15# 10" 45° | 44°55'30.00" 1.1« 1072 1.29 + 102




Table 3: Comparison of z(¢) = inv='(¢) and estimated errors E(e) with their exact values for lel > 1

Table 4:Comparison of z(c} = inv=!(c) and estimated errors E{e) with their exact values for |¢] ~ 1

Eg (radian)
£= in"'(zuncl) Ternct zg(e)

Eu'ul ' E_"limnﬂ

4.90 BI® 80°5% 7.23" 2004 1072 5.96 + 10-3

6.70 83° 82°58'50.14" 3.39 « 10-4 1.25 + 10-3

9.95 85 B4°59'52.79" 34910~ 1.73 « 104

17.60 87° 86°59'59.68" 1.57«10-% 1.01+10-%

56.70 89° 88°59'59 937 345507 313« 10"

Es (radian)
€= inv{:exu!) Teraet IS(E)

Eu'ul Eull'mute
1.82 72° 72°0'16.56" 8.03+ 105 1.63 « 10-4
220 74° 73°59°59.61" 1.89 « 10-¢ 330« 10"
2.68 76° 76°0'1.69" 817+« 10°¢ 5.77+10-¢
34 78° 78°1°30 46" 4.39+ 104 8.88+ 101
4.90 8i° 80°56'40.28" 968+ 104 466+ 10°2

Using the identity tan(5x/12} = 2 + /3, Eq.(40) becomes where  {=¢—inv(5x/12), or
- -]
@+ 4V T2+ VA (tanz) — 2= (. (41) [ ¢ = 1.44225¢' — 0.4¢ + 0.106976¢*/* — 0.0164828:7

nm]
Using the Taylor series for tan z and perturbation seties for z(¢), fi-
nally, we obtain { see Appendix B) the asymptotic solution

z(¢) ~ % +(7 - 4v3)¢ - (388 — 224v/3)(?
+ %(323565\/5 — 560431)¢° (42)

= %(97383044\/5 ~ 168672380)( + -+,
and the estimated error
E(() ~ %(97383044\/5 — 168672380)(*, (43)
where ¢ = ¢ - inv{5x/12). In Table 4, the exact and asymptotic
solutions, and the exact and estimated errors are listed,

6. Composite Approximate Solution of ¢ = inv~! (€) for —co <
£<+00
Combi}ling the above three cases together, we get the following

composite formulae for the inverse involute function ¢ = inv=1(e) in
. Eq.(1) as follows,

2 9 2
=g _ 5, . P aman _ 2 apn
“‘ PRl - gt g el - 53

145{553_’_ 3258 Js 0n

%97“ NALB L
1 = 35 + (7 — 4/3) — (388 — 224/3)(?
+4(323565v/3 - 560431)(° (44)

— §(87383044v/3 - 168672380)C* + .-+,
18< e < b

£

le] < 1.8

oy

b=f-lah -3+ +Er+41L

S RS I X

lel > 5

1
-
A
ftenleeg -

—0.213729 + 10~ £? 4 0.216645 & 10~ 13/}
—0.467749 4 107803 ..., le] < 1.8

¢, = 1.308997 4 0.0717968¢ — 0.02061910¢?
+0.6517G08 » 10-3¢? {45)
~0.1238501 » 10-3¢(* + ..., 18<e| <5

b =F~ 3+ 35 - 313068k 4 roarrk

¢~i

-13.32434;1, e, le] > 5
The corresponding estimated error expressions are
BIE N <18

4(97383044/3 — 168672380)(< - inv(57/12))¥,

£(e) ~ 18< el <5 (46)
4
(fg + = + )4, lel > 5
or
121437 » 104 ¢*, lel<1.8
E(e) ~ { 1.238501 + 103 (¢ - 2.423054)", 1.8<|e] <5 (47)

1&.32434;1», le| > 5

It should be mentioned that when ¢ < 1, corresponding to ¢ <
65°, the accuracy of the nine term expression of z(¢) in Eq.(17) is
better than that of the seven term expression in Eq.(44) for [¢] < 1;
when 1 < ¢ < 1.8, the performance of these two expressions is just
exchanged.

6. Numerical Example

The following application example illustrates the accuracy and
usefulness of the above explicit formulae of the inverse involute fune-
tion.



Problem  Two spur gears of 12 and 15 tecth, respectively, are
to be cul by a 20° full-depth 6-pitch hob. Determine the center dis-
tance at which to generate the gears to avoid undercutling (Mabie and
Reinholtz, 1987, p.183),

1 Ny,
o = F‘(k = -2—'5"1l @) = 0.01968 in.

1 My
ey = F;(k - T’ sin? ¢) = 0.02045 in,

2P‘(t| + c;)ta.ng&

invd' = inveg 4 N TN
1

= 1.02624

Using Eq.(16), we get

¢' = inv=!(0.02624)
= (3 «0.02624)} é +0.02624  (rad)

= 23.954248G2°.

_r,cosé_locuﬂﬂ'_ e
e 7 = 1028256395 n.
¢ _ Nicosg _ 1.25 ecos20° _ .
= et p—p = 1.285320494 in.

C'=1 +r, = 2.313576889 in.

with 0.0108634% error in C', The exact values cbtained by aumeri-
cally solving  the non-linear  equation (4) ~ are

¢ = 23.9682549*, and C' = 2.313828251 in., which match the re-
sults calculated by using Eq.(17) or the first expression of Eq.(44).
The values obtained by using the four term expression of Eq.(12) are
¢' = 23.9682573, and C' = 2313828294 in. (with 1.8 « 10-*% error).
The values in (Mabie and Reinholtz, 1987, p.183), obtained by using
linear interpolation from a table, are ¢/ = 23.97*, and C' = 2.3144
in. (with 0.02471% error). Therelore, the accuracy using the two term
explilcs(slion (16) is comparable to that v the linear interpolation
method.

7. Conclusions

The explicit series solutions and estimated error expressions for
the inverse involute function ¢ = inv="(c) arc derived by using per-
turbation techniques. When |e| < 0.215, i.e., |¢| < 45°, which is the
usual range for the tooth geometry calculations of involute gears, in-
volule splines, and involute serrations, we can just use the iwo term
expression 23(¢) of Eq.(16) with error in ¢ less than 1.0% of the range
of ¢ or 7.76 » 103 radian.

In order to improve the accuracy of the two term approximation
of the exact solution, we can use the economized asymptotic solution
zii(e) in Eq.(25), with error for ¢ less than 0.17% or 1.31 + 10-?
radian. Sometimes, we only consider the range of ¢ € (0,35°) for most
applications; then, we can use economized asymptotic solution z3! (¢),
which has efor less than 0.04% or 2.24 + 10-* radian for ¢ € {0,35°).

If higher accuracy is required, we can use the first four, seven, or
nine terms of Eq.(17), which have error less than 0.0018%, 4.89+10~* %,
and 2.01+ 107" % or 1.41+10-%,3.844 10~*, and 1.58+ 10~? radians for
d€E (0.45'&, respectively; the maximum error occurs at ¢ = 45°. This
accuracy should be satisfactory for practical applications. Under any
circumstance, if the explicit solution from Eq.(44) or (45) is used as
the initial value for the Newton's iteration algorithm, the convergence
of the algorithm is guaranteed and the perfect value of ¢ (reach the
precision limit of the computer) can be obtained in less three iteration
steps.

The accuracy using the two term inverse involute series Eq.(16)
is almost the same as the accuracy using the linear interpolation tech-
nique from a table of {¢,invg). Therefore, the use of the explicit for-
mulae derived in this paper, instead of an extensive table of (¢,inve),
are suggested in the tooth geometry calculations of the involute Eears,

splines, and serrations. Since the asymptotic series renders the implicit
inverse involute function explicit, it ja expected that these explicit for-
mulae will find their applications not onfy in the tooth geometry cal-
culations of gears, splines, and serrations, but also in some other fields
of engineering where the inverse involute function is involved.

It is hoped that the method delineated in this paper, which incor-
porates the perturbation techniques into the jnterval
method, will find its applications in solving other nonlinear problema,
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Appendix A. Derivation Details for |¢| 1
Eqs.(34) and (35) are repeated here for convenience.

1 1 1., 2, x _
nl(c -2y - et e )+v—2]-l. (A-1)

Y3 bl Ealm) € bt (), 38 0. (A=2)

To find the leading order term of g, let

¥y~ &, (A-3)
Substituting expression(A-3) into Eq.(A-1), we get
n[rlm 4 ord(1)] ~ 1.
Let ord(1)=ord(n/6,) or 6; = w; then, 1fpy =1 or g =1.
The leading order approximation of y becomes
y~n (A - 4)|



Substituting the following expression into Eq.{A-1),

y~nET e rn ity 4o (A-8)
we got
8 1
I+nun+on+Pu+ 7y + o)
2
+ 37+ 7'y + 7'y + 0(n')] (A -6)

- éﬂ{’H Ao+ 00 - 2~ 1.

[1= (14 nm +0'w + Py +5'y)
+(1+m+0n+ Py +o'n)
-(l+m+o'n+7u+0'n)
+(1+mn +0'n + Pu+r'n)t - o))
+ ;[rf +7'w + 'y + 0(n)] - [%n‘ +0(5")] - %q«- 1
(A-7)

The following equations can be obtained by using the dominant balance
method

1=1, ard(1),
-nf2-xf2=0, ord(n),
-n+y+2/3=0, ord(7),
W+ 2pn - y? + 21 /3 =0, ord(q’),

“n+ 2 -t 4 u /31 45 =0, ord(rz‘). )
A8

Alter solving Eqs.(A-8), we finally obtain y, = —x/2,p = (x/2)* +
2/3, 1 = —(x/2 — x5 = (x/2)* + x* + 13/15. Hence

= e (it (et By A
y~7n 2rH-(4+‘.,)'r (,3+1r)'1+(15+1r +15)n+ - (A=9)

Substituting p = 1/r and y = x/2 — z into expression{A-9), we will
get the expression (36)

*r 1 ® 2.1
ey meta - (T HIa

(A -10)
21 w13
+(?+W)£—‘—(E+I’ +E)e—‘+

Appendix B. Derivation Details for |¢| ~ 1
Eq.(4) becomes Eq.(41} with { = invé — inv(5x/12) and z =
z 4+ 5x/12,

(s+4¢5)f:(2+¢5)"-' (tanz)* —z =, (B-1)

nwl
(8 + 43} tanz + (28 + 16v3)(tan 2 + (104 +53v3I)tan z)?

+ (388 + 224v/3)(tan 2)* 4 O{tan® 2) — 2 = (.
(B-2)
According to Taylor series of tan z in Eq.(5), Eq.(B-2) becomes

(8+4v2)(z + éz’ + 12—52' 4+
+(28+ 16\/5)(z+§z’ ++)
+(104+53v/§)(2+%z’ +--9’
+ (388 + 224V3)(z + %z’ +) o) -z =¢.

(B-3)
Simplifying Eq.(B-1), we get

(7 +4V3)z + (28 + 16v3)27 + gu_-;-;siiz,

+(388 + 224V ) + 0(*) = (. (B-4)
Let the solution to Eq.{B-4) be the asymptotic series
d)~ o ba(Ozay  Bant ()€ 6a((), a5 (—0*. (B-_5)
LT )
We can prove 6,(¢) = {*; therefore,
)~ +Cn+Catnte (B -6)

For convenjence, let A; = (7 + 4V/3),4; = (284 16v3), Ay = (320 +'
163v3)/3, A, = (388 + 224/3); then, Eq.(DB~) becomes

Ml +Cn+Cn+% 40+ AHAln +Cn+ .Y

+AKGn + P+ Az +-) +0(¢*) ~ ¢ (B8-7)

After expanding polynomial powers and using the dominant balance |
method, we obtain

Alzl = l, ord((),
Atz + A:z,’ =0, Ol‘d((’ ),
A;Z; + A;2z,z; + A,‘]Zf = 0, ord((’),

Ayzy + Ar(22] 4 22,23) + A, (3zf21) + A, z} =0, OTd(C‘()- )
B-8
After solving the nonlinear system of Eqs.(B-8), we finally find

7y = T— 4+/3 22 0,0717968

7 = 224+/3 — 388 ~ —0.02061910

23 = (323565+/3 - 560431)/3 == 0.6517008 + 10-*

2y = (168672180 — 97383044/3)/3 & —0.1218501 » 10-? :

Hence

2(() ~(7 - 4V3)( + (224v73 - 388)(?
+ %(323565\/5 - 560431)¢?

(B-9)
+ %(168672380 - 97383044v3)¢* + -+ .
Substituting z = z — 5r/12 into expression(B-9), we get
z(¢) ~f—; +(7 = 4V3)¢ + (224V3 - 388)(°
+ %(323565\/5 - 560431)(* (B-10)

+ %(mssmso - 97383044V3)C* + -+ .




