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An Historical Note on Finite 
Rotations 

It is shown in this paper that Euler was first to derive the finite rotation formula 
which is often erroneously attributed to Rodrigues, while Rodrigues was responsible 
for the derivation of the composition formulae for successive finite rotations and the 
so-called Euler parameters of finite rotation. Therefore, based upon historical facts, 
the following nomenclature is suggested: Euler's finite rotation formula, 
Rodrigues' composition formulae of finite rotations, and Euler-Rodrigues 
parameters. The text of the paper contains modern symbols and formula forms, 
while the Appendices contain brief summaries from relevant historical sources with 
minor alterations in symbols at the most. 

I Introduction 
To determine the final displacement of a point of a rigid 

body which undergoes a finite rotation around a fixed axis in 
space is a classical problem, which has attracted the attention 
of many researchers. Derivations of the finite rotation for
mula by using the different tools, such as scalars, quaternions, 
vectors, matrices, and tensors, etc., have been pub
lished. However, there exists some confusion about who was 
the first contributor of the derivation of the finite rotation for
mula (Goldstein, 1980, p. 165). In our opinion, the formula 
should be ascribed to the person who first gave the fundamen
tal formula for finite rotation regardless of the form the for
mula was written in. Through our historical reference survey, 
we find that the finite formula is often used without an 
eponymic designation in textbooks and reference books; but 
in many cases, the formula is erroneously ascribed to the 
French mathematician Olinde Rodrigues (1794-1851) such as 
in Hamel (1949, p. 103), Hiller and Woernle (1984), and Craig 
(1986, p. 58). Although one can find the derivation of the 
finite rotation (as well as displacement) formula by using 
Rodrigues parameters in Rodrigues' paper (Rodrigues, 1840, 
pp. 403-404), the rotation formula expressed in terms of the 
direction cosines of the rotation axis and the rotation angle 
was derived by the Swiss mathematician Leonhard Euler 
(1707-1783) in Euler (1775b, p. 216) or Euler (Vol. 9, p. 107) 
and was published 65 years earlier than Rodrigues' paper as is 
discussed in the following section. 

On the other hand, the composition formulae of rotations 
which are commonly given without an eponymic designation 
were actually derived by Rodrigues. For proper recognition of 
contributions, which is also the main purpose of this paper, 
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the composition formulae of rotations should be attributed to 
Rodrigues. 

II Euler's Finite Rotation Formula and Euler-
Rodrigues Parameters 

The following is Euler's theorem which is well 
known: The general displacement of a rigid body with one 
point fixed is a rotation about some axis (Euler, 1775a, p. 202; 
Euler, Vol. 9, p. 95; Goldstein, 1980, p. 158). The spatial 
displacement of a rigid body about a fixed point O can always 
be represented as a spherical rotation of a general point P 
described by the position vector r as shown in Fig. 1. Ac
cording to the Euler's theorem, one can represent the spherical 
rotation of the vector r in terms of the rotation 
parameters: the angle of rotation 4> and the unit vector n 
along the axis of rotation. The following vector representation 
of the rotation formula is commonly used (Gibbs, 1901, p. 
338), (Bisshopp, 1969), (Beatty, 1977), and (Goldstein, 1980, 
p. 165): 

r' = rcos<£ + (nXr)sin<£ + n(n»r)(l -cos0) 

= r + (n X r)sin$ + [n x (n x r)](l - cos</>), * ' 

where r and r' are the initial and final positions of the vector, 
respectively, as is shown in Fig. 1. In order to show the 
similarity between the formula derived by Euler and other 
commonly used representations, and to try to explain how 
Rodrigues has been erroneously credited for the discovery of 
the formula (1), the following different version of the rotation 
formula will be discussed. 

Since the rotation matrix can be treated as a linear operator, 
and is intuitively simple, the matrix representation of rigid 
body rotation is popularly used. If one defines the skew sym
metrical matrix N corresponding to a unit vector n = [nx, n2, 
n3]

T as follows 

N = 

0 

« 3 

-n2 

~n3 

0 

« i 

" 2 

~ « 1 

0 

(2) 
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then the cross product n x r of two vectors n and r can be ex
pressed in matrix form as 

n x r = Nr. (3) 

Substituting (3) into (1), we can obtain the following matrix 
representation of finite rotations 

r '=Rr, (4) 

R = I + Nsin0 + N2(l-cos</>), (5) 

where I is the unit matrix, and R = R(<£) is the rotation matrix 
in terms of the direction cosines nx, «2, n3 of the axis of rota
tion and the rotation angle </>. 

Without losing generality, one can replace the position vec
tor r and r ' by the unit vectors r^ and rn, respectively. Then, 
equation (4) becomes 

r n '=Rr n . (6) 

Defining the direction cosines of unit vectors n, rn, and /•„', 
respectively, as follows: 

(7) 
cosa 
cos/3 
COSY 

. «"n = 

("cosf" 
COST? 

COS0 
. ' » ' = 

r cosf' i COST)' 

COS0 ' 

and substituting (5) and (7) into (6) will result in 

cosf = cosf(cos2a + sin2acos<£) 

+ cosr?(cosacos/3(l - cos$) - cosYsin</>) 

+ COS0(COSO:COSY(1 - cos<j>) + cos)3sin</>) 

cos?)' = COSTJ(COS2(3 + sin2(3cos</>) 

+ COS0(COS/3COSY(1 - cos<£) - cosasin^) 

+ cosf(cosacos/3(l - cos<t>) + cosYsin$) 

cos#' = cos#(cos2y + sin27cos<£) 

+ cosf(cosacos7(l - cos<£) - cos/3sin<£) 

+ COSTJ(COS|3COSY(1 - cos0) + cosasin<£). 

(8) 

R = 
l 

l+6 I
2 + 62

2 + 63
2 

l + 6,2-62
2-63

2 

2(6,62 + 63) 

2(6 t63-62) 

This form of rotation formulae was actually derived by Euler 
(1775b, p.216) or Euler (Vol. 9, p. 107) as is shown in Appen
dix [A.I.]. Therefore, the finite rotation formula (1) or (4) and 
(5) is nothing but a vector or matrix form of the formulae (8) 
obtained by Euler more than two hundred years ago. Our con
clusion also seems to be supported by Cayley (1846), Benedikt 
(1944), and Hill (1945). 

If one uses Euler angles, 4>, 0, and i/s the following rotation 
matrix can be obtained (Euler, 17??, p. 51; Euler, Vol. 9, p. 
424; Goldstein, 1980, p. 147, Eq. (9)). 

/ rotation axis 

Fig. 1 The vector diagram for Euler's finite rotation formula 

independent angles as is shown in Appendix C, but these 
angles are not what came to be known as Euler angles. 

Due to the large number of trigonometric functions in
volved, the Euler angles are difficult to use in numerical com
putations for the large scale multibody mechanical systems. If 
one uses Rodrigues parameters (Rodrigues, 1840, p. 400; Bot-
tema and Roth, 1979, p. 148): 

<j) <j) (j> 
o 1 =« 1 tan—-, 62 = w2tan-—, 63=/73tan-—-

then the expression (1) becomes 

2(bxr) + 2b(bT)-2(b«b)r 
r — r = 

1+b-b 

where b = [bi, b2, b3]
T, and the rotation matrix (5) becomes 

2(6 ,6 2 -6 3 ) 2(6,63 + 62) 

l - 6 2 + 62
2-63

2 2 (6 2 6 3 -6 , ) 

2(6263+6!) l - 6 , 2 - 6 2
2 + 63

2 

(10) 

(11B) 

(116) 

The corresponding rotational elements derived by Rodrigues 
are shown in Appendix All . Rodrigues parameters (10) were 
used by the Irish mathematician Arthur Cayley (1821-1895) to 
study the motion of a rigid body in Cayley (1843), (1846), and 
(1848). One disadvantage of using Rodrigues parameters (10) 
is that the rotation matrix (116) is singular when <j> = w. 

For the general computer implementation of multibody 
dynamic systems, the following four parameters are extensive
ly used: 

R 
cosi/'cosc/) — cosOsin^sin^ 
cosi/'Sin^ + cos0cos<j/>sim/' 

sinflsini/' 

- sint/<cos4> - cos0sin$cosi/' sin0sin(/> 
- sm\l/sin<j> + cosflcos^cosi/' — sin0cos<£ 

sin0cos^ cos0 
, (9) 

where the angle <j>, 6, and \j/ are precession, nutation, and spin 
angles, respectively. It is noticed that the original paper about 
the derivation details of Euler angles was published in Euler 
(17??) or Euler (Vol. 9, p. 413-441) after Euler's death 
(1707-1783) instead of in Euler (1775a), as was erroneously 
referred to by Whittaker (1937, p. 9). In Euler (1775a), Euler 
only derived the rotation formula expressed in terms of three 

e0 

* . 4> 
= cos^—, ex =/ijSin- e2 = n2sin-

<t> 
e3=«3sin- (12) 

2 ' - ' - ' - - 2 

which satisfy the relation 

e o
2+ e i

2+e2
2 + e3

2 = l. (13) 

These four parameters are customarily called Euler 
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parameters (Whittaker, 1937, p. 8; Bottema and Roth, 1979, 
p. 150; Goldstein, 1980, p. 153; Kane et al., 1983, p. 12). 
Presumably, these four parameters were discussed in Euler's 
paper (1775b, p. 217), as was mentioned by Klein (1884 or 
1914, p. 38) and Whittaker (1937, p. 8). The German 
mathematician Felix Klein's (1849-1925) statements may ex
plain why Euler's name is ascribed to the parameters (12). In 
Klein (1914, p. 38), Klein claimed that "That it was proper, in 
the treatment of rotations around a fixed point, to introduce 
the parameters a, b, c, d of the preceding paragraph (or at 
least their quotients a/d, b/d, c/d), Euler had already found" 
in Euler (1775b, p. 217). The parameters a, b, c, and d in the 
above Klein's statements are the parameters (12) elt e2, e3, 
and e0, respectively, and the parameters a/d, b/d, c/d are the 
so-called Rodrigues' parameters (10). But the fact is that Euler 
did not use these parameters to describe finite rotations ex
plicitly in Euler (1775b, p. 217). Even half angles of the rota
tion which are crucial to these parameters can not be found in 
all of Euler's papers (Nos. 12-16) referred at the end of this 
paper through our historical reference survey. It was 
Rodrigues who defined the parameters (12) explicitly and used 
them to derived the composition formulae in Rodrigues (1840, 
p. 408) as is shown in Appendix B. Therefore, the parameters 
(12) should be attributed to Rodrigues instead of Euler. 
However, to distinguish these from Rodrigues parameters 
(10), the parameters (12) are called Euler-Rodrigues 
parameters hereafter, as is also proposed by Altmann (1986, 
p. 20). 

If one uses Euler-Rodrigues parameters (12) and the result 
derived by Rodrigues (1840, p. 404), and notices that 

p. 359), Whittaker (1937, p. 9), and Corben and Stehle (1950, 
P. 171) 

r= [R(0 ) ] - ' r ' = [R(-0) ] r ' , R(0) = [R( - 0)] - (14) 

where t = [x, y, z]T, and r' = [x', y', z']T = [x+Ax, y + Ay, 
Z + Az]T as defined in Appendix All then, the following rota
tion matrix will be obtained. 

or 

r = qiq~ 

-q li'q. 

(21a) 

(216) 

According to Cayley's note in his collected mathematical 
papers (1889, Vol. I, Note 20, p. 586), the quaternion for
mulae (21) itself was first derived by Hamilton. However, 
physical meaning of the quaternion form (21) in the context of 
finite rotation, utilizing Rodrigues parameters (10), was first 
discovered by Cayley [Cayley (1843)]. When expanded, the 
quaternion form (21) leads to formulae about which Cayley 
asserted in Cayley (1845) that "In fact the formulae are 
precisely those given for such a transformation by M. Olinde 
Rodrigues" in Rodrigues (1840) shown in Appendix AIL 

III Rodrigues Composition Formulae of Finite 
Rotations 

Euler in Euler (1775b) considered a single finite rotation and 
obtained the formula shown in the preceding section. Euler 
did not solve the problem of finding the resultant of successive 
finite rotations, although Euler's theorem affirms its ex
istence. However, Altmann (1986, p. 19) has asserted that in 
Euler (1775a) "he considered the composition of two suc
cessive affine transformations (translation-rotations) and 
showed that the orientation of the final axes depends on six 
angular parameters, of which three can be eliminated 
algebraically, leaving three parameters only, thus determining 
a rotation. It must be made clear that Euler's approach is 
algebraic, not geometrical and that it is not constructive. That 
is, he does not provide closed expressions to determine the 
angle and axis of the resultant rotation. Euler, however, is 

R = 
2 ( ^ + e ? ) - l 
2(e1e2+e0e3) 
2(e,e3-e0e2) 

2(e,e2 - e0e3) 
2{el + e})-l 
2(e2e3+e0e,) 

2(e1e3+e0e2) 
2(e,e3-e0e1) 
2(e} + eh-\ 

The same result can be derived from equation (5) by using 
Euler-Rodrigues parameters (12) directly. 

One of the applications of Euler-Rodrigues parameters is 
found in the quaternion representation of the finite rotation 
formula. The quaternion was conceived by the Irish 
mathematician and astronomer William Rowan Hamilton 
(1805-1865) when he was on the way to presiding a meeting of 
the Royal Irish Academy on Monday, October 16, 1843 
(Hamilton, 1844; 1853, p. 48; Graves, 1885, Vol. II, p. 434). 
The number 

q = a + bi + cj + dk (16) 

is called a quaternion with the following properties: 

ij = -ji = k, jk=-kj = i, ki =-ik=j. (17) 

If one defines the following unit quaternion via Euler-
Rodrigues parameters, 

q = e0+eli + ej + e3k, (18) 

and the vectors r and r ' , which are the initial and final posi
tions of a vector, respectively, 

t = 0 + xli+x2j + x3k, 

r ' =0Jrx{i-\-xy + x3k, 

(19) 

(20) 

then the quaternion representation of the rotation formula 
will result as Cayley (1845), Hamilton (1853, p. 217; 1899, 

(15) 

most often credited for the solution of the existential, 
geometric, and constructive problems regarding the composi
tion of two rotations." But the fact is that Euler (1775a) only 
discussed the representation of a single finite rotation and 
showed that it could be expressed by nine, and then six de
pendent angular parameters, and finally by three independent 
parameters, as is shown in Appendix C. It should be noted 
that the formulae (8) and (9) of a single finite rotation derived 
in Euler (1775b), and (17??), respectively, are much nicer in 
form than that in Euler (1775a). 

It was Rodrigues who considered successive finite rotations 
(Rodrigues, 1840) and found the expressions for determining 
the orientation of the resultant axis of rotation and the 
geometrical value of the resultant angle of rotation from the 
given angles and axis orientations of the two rotations. Let us 
denote the Rodrigues parameters of the first rotation as 

'-[., W = n.tan-
* 

«3tan-fr- ntan-
* (22) 

which is followed by the second rotation 

r <£ 4>' <t>"\T </>' 
W' = n ' j tan—, n{ tan-—, n3' tan—- = n ' tan-—, (23) 

t- Zi Zd Zi J Z 

with the resultant rotation being 

r <t>" <t>" 0 " ~ i r <t>" 
W " = «i" tan-^—,«2" tan-^-,n3" t a n — = n " t a n — , (24) 

L £j Zd Z -i Zd 

where n, n ' , n ", and <t>, <j>', 4>", are the unit vectors along the 
axes and the rotation angles of the first, second, and resultant 
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rotations, respectively. Rodrigues actually obtained the com
position formula for two successive rotations (Rodrigues, 
1840, p. 408), shown in. Appendix B equation (B.l) which can 
be written in the following vector form (Gibbs, 1901, p. 345; 
Paul, 1963; Bisshopp, 1969), 

W" 
W + W ' - W x W _ _ _ _ _ = n"tan- (25) 

The formula (25) appears in the later literature, but without an 
eponymic designation. Besides the formula (25) Rodrigues 
(1840, p. 408) also derived the composition formula (Appen
dix B equation (B.2)) which, by using the so-called Euler-
Rodrigues parameters (12), becomes as follows: 

'e0" - e0e0' - e,e{ - e2e2' - e3e3' 

e" = e0e{ + e^ - e2e3' + e3e2 

e2" = e0e2' + ex e{ + e2e^- e3e{ 

e3" = e0e3' - exe{ + e2e[ + e3e0' 

(26) 

The four Euler-Rodrigues parameters (e0"» e" > e2", e3") are the 
resultant of two successive rotations (e0, e,, e2, e3) and (e0', 
e{, e{, e{). Formula (26) can be written in the vector form as 

c0" '=e0e0 ' -e«e' 

e" = e 0
e ' + e 0 ' e - e x e ' , 

(27) 

where vectors, e, e ' , and e" are defined, respectively, as 
follows: 

(28) 

e=[e,e2e3]7 ' , 

e> = [e{e{enT, 

e" = [ei"e2"e3"]r. 

If one defines the following quaternions, 

q = e0 + e1i + e2j + e3k, 

q'=ei + e{i + eij + e;k, (29) 

q"=eS+e{'i + eZJ + ei'k, 

then, according to equation (21a), 

r =q'r'q' 

Therefore, 

-q'qrq~lq'"' =q"rq" 

q" =q'q. 

(30) 

(31) 

Formulae (26) and (31) which constitute the theorem for the 
multiplication of quaternions were discovered by Hamilton 
according to his letter to John T. Graves dated October 17 of 
1843 which was written just one day after the quaternion was 
conceived (Hamilton, 1844). Perhaps, Felix Klein's statements 
in Klein (1914, p. 38) are constructive. "It appears, however, 
that the formulae of composition (i.e., equation (26)) re
mained still unknown for a long time, till they were discovered 
by Rodrigues (Rodrigues, 1840). Hamilton then made the 
same formulae (Hamilton, 1844, p. 489) the foundation of his 
calculus of quaternions, without at first recognising their 
significance for the composition of rotations, which was soon 
brought to light by Cayley (Cayley, 1843, p. 141)." It is no
ticed that Cayley's paper was published in 1845, instead of 
1843, as is referred to by Klein. Since Rodrigues first obtained 
the formulae (26), along with full physical meaning for com
bining rotations, we suggest that the formulae (25), (26), and 
(27) be called the Rodrigues' composition formulae for finite 
rotations. 

IV Conclusions 

From the preceding arguments, we conclude that it was 
Euler, not Rodrigues, who first derived the scalar form of the 
finite rotation formula (1). Rodrigues, on the other hand, 
derived the scalar form of the composition formulae (25), 
(26), and (27) for successive finite rotations, and was also 
responsible for the parameters (12). 

For the terminology, we suggest that equation (1) be called 
as Euler's finite rotation formula; parameters (12) as Euler-
Rodrigues parameters; and equations (25), (26), and (27) as 
Rodrigues' composition formulae for finite rotations. 
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A.II The Displacement Formulae Derived by 
Rodrigues1. Let the initial and the final coordinates of a 
point be x, y, z and x', y', z ' , respectively; the change bet
ween the two coordinates is defined by relations 

x'=x+Ax, y'=y + Ay, z'=z + Az 

After defining the parameters m, n, andp as follows: 

0 <j> <f) 
m = 2cosatan——, n = 2cos0tan , p = 2cos7tan . 

(A..2) 

04.3) 

Rodrigues obtained the following formulae (Rodrigues, 1840, 
p. 404): 

A P P E N D I X A 

Euler's Rotation Formula 

A.I. The Rotation Formula Derived By Euler. After 
defining the three orthogonal coordinates ABC with the origin 
at a fixed point / a s shown in Fig. 2, Euler obtained the follow
ing relationship between the direction cosines cosf , cos?)', 
cos0' of the unit vector Iz (after rotation) and the direction 
cosines cosf, COST;, cos0 of the unit vector IZ (before rotation) 
as follows (Euler 1775b, p. 216; or Vol. 9, p. 107): 

cosf = cosf(cos2cv + sin2acos0) 

+ cosji(cosacos/3(l - cos<j>) - cosYsin^) 

+ cos0(cosacos-y(l - cos$) + cos/3sin0) 

COST;' = COST)(COS2/3 + sin2|8cos</>) 

+ cos0(cosj8cos7(l - cosoi) - cosasin<£) (A. 1) 

+ cosf(cosacos/3(l - cos<£) + cos7sin$) 

cosfl' = cos0(cos27 + sin27cos<#>) 

+ cosf(cosacos7(l - cos<£) - cos/3sin</>) 

+ cosi)(cosj3cos7(l - cos<j>) + cosasin</>), 

where cosa, cos/3, COS7 were the direction cosines of the rota
tion axis along which the angle </> is rotated as is shown in Fig. 
2. 

Z f COS{, OOS7), COSl)J 

initiol position 

fcOSf, COST]', COST}) 

final position 

Coosa, cos/3, cosy) 
rotation axis 

Fig. 2 The schematic diagram for the derivation of the rotation formula 
by Euler 

Ax = u + -

m , , , x 
py — nz + -^r-(mx + ny+pz) — (ml + n1 + p2)-—-

1 + 
m2 + n2 +p2 

fi y 
mz-px + —-(mx+ny+pz) — (m2 + n2 + p2)—— 

Ay = u + -

1 + 
m2 + n2 +p2 

{A A) 

Az=w+-

P z 
nx—my + ——(mx + ny + pz) — (m2 + n2+p2)—— 

1 + 
m2 +n2 +p2 

where u, v, and w were the three translational terms which 
were the functions of the rotation angle 0 and the displace
ment t along the rotation axis with three direction cosines 
(cosa, cos/3, COS7) as is shown in Fig. 3. Equations (A.2) and 

' I n the pre-vector era, both left-handed and right-handed coordinate 
systems were commonly used. Rodrigues and Cayley appear to have utilized the 
former in their derivations which, for finite rotation formulae, has the effect of 
reversing the sign of convention for the rotation angle 0. 

screw axis 
(cosa, cosfl, cosy) 

Fig. 3 The schematic diagram for the derivation of the displacement 
formulae by Rodrigues 
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(A.4) together formed the displacement formulae from the in
itial coordinates to the final coordinates. 

An alternate form of the, displacement formulae derived in 
Rodrigues (1840, p. 403) was 

Ax = u + sin</>(>cos7 _ zcos/3) 

+ 2s in 2 —-4>[cosa (xcosa +ycosfi + ZCOS7) - x], 

Ay = v + sm<j>(zcosa - XCOS7) 

+ 2s in 2 —-(McospXxcosa +>>cos(3 + ZC0S7) -y], 

Az = w + siiuj>(xcosp -ycosa) 

+ 2sin2—-<f> [cos7(xcosa+.ycos/3 + ZCOS7) - z], (.4.5) 

There are striking similarities among the rotational elements 
of formula (A.5) and formula (A.l). 

1 1 1 1 . 1 
cos——$ = cos <jf>cos 4> - sin <j> sin 4> cosy, 

2 2 2 2 2 

. 1 . 1 1 . 1 1 
sin——$cosA = sin d>cos <t>' cosa + sin <j> cos——<£cosa 

2 2 2 2 2 

+ sin——4>sm </>' (cosi8cos7' - COS7COS/3'), 

1 1 1 • 1 1 
sin——3>cosB = sin <£cos <f>' cosp + sin $ cos—-$cosp 

. 1 . 1 
+ sin—-</>sin <j> (COS7COSQ! -cosacos7 ), 

. 1 1 1 . 1 1 
sin——$cosr = sin <£cos <t>' COS7 + sm <j> c o s - — 0 c o s 7 

2, 2 2 2 2 

+ sin—-</>sin </>' (cosacosp" ' - c o s / 3 c o s a ' ) > 

A P P E N D I X C 

(B.2) 

A P P E N D I X B 

Rodrigues' Composition Formulae of Finite Rotations2 

Rodrigues obtained the composition formulae for the rota
tion from the initial coordinates to the final coordinates for 
two successive rotations as follows (Rodrigues, 1840, p. 408): 

Euler's Displacement Transformation Formula 

Euler derived the displacement transformation formula in 
terms of three translation parameters and three independent 
angular parameters, though not Euler angles, in Euler (1775a; 
or Vol. 9, p. 84-98). In Fig. 4, a point Z was defined by (p, q, 
r) with respect to the body coordinates ABC, and the same 
point z in the fixed coordinates could be expressed in terms of 
three translational parameters / , g, and h of the origin of the 
body coordinates ABC and the body coordinates p, q, and r 
via the rotational parameters F, F', F"; G, G', G"; and H, 
H',H". 

1 1 1 1 
tan——0cosa + tan <j>' cosa' + tan—-</>tan <t>' (cos/3cos7' - cos7cosj3') 

tan——*cosA = , 
2 , 1 1 

1 - tan-—$tan—-</> cosy 

1 1 1 1 
tan——0cos/3 + t an—-0 ' cosp + tan—-0tan </>' (cos7Cosa' - cosacos7') 

tan——$cosB = , 
2 , 1 1 

1 - tan <Man——6 cosy 
2 2 

1 1 1 1 
tan—-$cos7 + tan—-<l>' COS7 + tan-—#tan—-</>' (cosacos(3' - cos/3cosa') 

1 2 2 Zt 2, 

tan——-$cosr = , 
2 1 1 

1 - tan <£tan <A'cosc 
2 2 

cosy = cosacosa' + cos/3cos(3' + COS7COS7', (B. 1) 

where (cosa, cos)3, COS7), (cosa', cos/?', COS7'), and (cosA, 
cosB, cosr) were the direction cosines of the first, second, and 
the resultant rotations with rotation angles <j>, </>', and *, 
respectively. 

The composition formulae which satisfy the quaternion 
multiplication rule was derived as follows (Rodrigues, 1840, p. 
408): 

x=f+Fp+F'q + F"r, 

y = g + Gp + G'q + G"r, 

z = h + Hp + H"q + H"r 

(C.l) 

Substituting the point Z = (p, 0, 0) in the body coordinates 
ABC into equation (C. 1) and considering the condition for the 
rigid body 

\IZ\= \iz\, (C.l) 
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or, 

tanf= 

tanftanf = -cos(rj — r/')> 

t a n f ' t a n f = -cos(V -? / " ) , 

tanf" tanf=-cos(r /"- )?) . 

, tanf': 

(C.8) 

C O S ( l j ' - 1 j " ) 

tanf " = -

COS(T) " - rj) 

cosft-•>/ ') 
(C.9) 

Fig. 4 The schematic diagram for the derivation of the displacement 
transformation formula by Euler 

P2 = (x-f)2 + (y-g)2 + (z-h)2 =p2(F2 + G2+H2), (C.3) 

one would obtain 

F2 + G2+H2 = l. 

Similarly, one could derive 

F"2 + G'2+H'2 = l, 

F"2 + G"2+H"2 = l. 

Equation (CAa) would be satisfied after defining 

F=sinf, G = cosfsinr;, //=cos£eos?/. 

Similarly, F', G',H'\ and F", G", H" were defined as 

F ' = s i n f , G" =cosf'sinj)', H' =cosf'cosr;', (C.Sb) 

F " = s i n f . G"=cosf"sinr/", / / " =cosf"cosr,", (C.5c) 

which satisfy equations (C.46), (C4c). In order to reduce the 
six dependent parameters, f,»?, f', 17' > f" > and 17" to three in
dependent parameters, substituting the point Z=(p, q, 0) into 
equations (C.l) and using the conditions (C.2) and (C.4) 
would result 

where A was defined as 

A = tanftanf'tanf" = V - cos(r/ -17 ')cos(r/' - rj ")COS(TJ " -17). 

(CIO) 

Through equation (C.9), one could obtain 

s in f= - V c o t 0 ' c o t 0 \ c o s f = V l - c o t 0 ' c o t 0 " 

sinf ' = - Vcot0"cot0, cosf' = V l - c o t 0 " c o t 0 (C. 11) 

(C.4A) 

(C.46) 

(C.4c) 

(C.5«) 

sinf" = -VcotJcote 7 , cosf" = V1 - cot0cot0' 

where 0, 0 ' , and 0" were defined as 

d = ri'-n", 6'=T)"—r), 0 " = i / - i ? ' 

which satisfy the relation 

0 + 0 ' + 0 » = O . 

Defining 

? = COS0, / ' =COt0 ' , ?"=COt0" 

would finally bring equation (C. 1) into 

(C.12) 

(C.13) 

(C.14) 

x =f- \lt't"p + s in r jVl - / ' / " <7 + cosr/V 1 - ' ' ' " r > 

y = g - yJtf'p + sinij' -J\-t"tq + COS17VI -trtr, (C.15) 

p2+q2 =p2 + q2+2pq(FF' + G C + ffiT). (C.6) 

Therefore, 

Similarly, 

FF'+GG'+HH'=0. 

FF" +GG" +HH" = 0, 

F'F" +G'G" +H'H" =0. 

(C.I) 

(C.lb) 

(C.lc) 

z = h-yfiFp + sin?/" Vl - « ' ^ + COST;" j l ^ t i 7 ' r , 

where, /, ; ' , and ?" were the functions of three independent 
rotational parameters »),)?'> and ?)" expressed by equation 
(C.12) and (C.14). 

The trigonometrical identity 

t a n 0 " = - t a n ( 0 + 0 ' ) = - ^ ^ j , (C.16) 
l - tan0tan0 ' 

gives 

tt" +t't" +tt' = l, (C.17) 

After substituting Fs, G's, and ITs in equation (C.5) into 
(C.l), one could get 

which would result in the orthogonality relations (C.4), (C.l) 
among the coefficients of p, q, and r in equation (C.15). 
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