
Journal of
Computing and

Information
Science in

Engineering
Technology Review
p
e

f

n

r
m

o

a

s
r

.
o

m

een

r-
si-
n be
the
to

sed
ro-

the
be

suc-
re-

the
of
or
tory
cts

ed.
m-

n-
s to
ire-
im-
rating
of

ch-
ent.
ies
ent
eal-
of
ma-
n-
de-

nts
for
n-
cto
en-
ost
po-
and

ica-

of
Real-Time Computing in Open
Systems for Manufacturing

Harry H. Cheng
Mem. ASME, Department of Mechanical and
Aeronautical Engineering, University of California,
One Shields Avenue, Davis, CA 95616

Frederick Proctor, John L. Michaloski,
and William P. Shackleford
Intelligent Systems Division, National Institute of
Standards and Technology, 100 Bureau Drive,
Gaithersburg, MD 20899

This article reviews various mechanisms in languages and o
ating systems for deterministic real-time computing. Op
architecture systems will be defined and their applications
manufacturing will be addressed. Market directions for ope
architecture manufacturing systems will be surveyed. Per
mance issues based on real-time, reliability, and safety will
discussed relating to manufacturing factory automation desig
and implemented with component-based, plug-and-play op
architecture. @DOI: 10.1115/1.1351819#

1 Introduction
Machine controllers for factory automation have evolved fro

their origins in mechanical devices for regulating and transfo
ing engine power, into computers ranging in size from tiny e
bedded chips to networks of high-performance workstatio
However, the physical constraints of factory floor operation,
cluding harsh environment, continual operation, high perf
mance, and long capitalization life expectancy have limited m
chine controller’s advancements so that they have historic
lagged behind mainstream hardware and software technology
special purpose systems, such factory automation is costly to
port and maintain, and often, the provider is the sole supplie
parts and service. Moreover, such systems cannot easily ada
meet new manufacturing demands or technology innovations

Manufacturers realize the shortcomings of proprietary soluti
and are eager to leverage commodity PC hardware and softwa
machine control. This has resulted in the trend in factory auto
tion for open, standards-based computer products by opting
general-purpose off-the-shelf PC hardware and software tech
ogy wherever possible, and adapting it to the more stringent ne
of the factory floor. Machine controllers used in factory autom

Contributed by the Embedded Systems Committee for publication in the JOUR-
NAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received Sept. 2000; revised Dec. 2000. Editor: P. Khosla.
92 Õ Vol. 1, MARCH 2001 Copyright © 20
er-
n-
in
n-
or-
be
ed
en-

m
m-

-
ns.
in-
r-
a-
lly

. As
up-
of

pt to

ns
re in
a-
for

nol-
eds
a-

tion built with this open, standards-based premise have b
termed open-architecture controllers@1–3#. The open-architecture
strategy is part of an effort to improve the agility of manufactu
ing by integrating the shop floor directly into the enterprise bu
ness systems. Numerous benefits to factory automation ca
achieved by using commodity hardware and software from
computing and communication markets—e.g., improved time
market, increased production yield, lower product cost, increa
production capacity, reduced inventory, and optimization of p
duction workforce.

The trend toward adopting open, desktop technology on
shop floor means that the factory automation market may
poised to benefit but there are obstacles blocking immediate
cess. Many factory automation applications have strict safety,
liability, and real-time performance requirements not faced by
desktop computing products. This paper will study the impact
reliability and real-time performance requirements on using
adapting desktop open architecture tools and services for fac
automation. Market surveys for available open desktop produ
based on applicability to factory automation will be present
Typical factory automation that will be considered includes co
puter numerical control~CNC! for milling, material handling ro-
botics, and coordinate measuring machine~CMM! for part inspec-
tion, Programmable Logic Controller~PLC!, and General Motion
Control ~GMC! found in the packaging industry.

The paper will begin with a characterization of ope
architecture and then review the implications that open mean
factory automation on the shop floor. Next, the real-time requ
ments of factory automation will be discussed as well as the
pact of these requirements on systems issues, such as ope
system, communication and platform. A look at the concept
hard and soft real-time will the reviewed as an industry ben
mark concept and as a more formalized correctness requirem
The paper continues with a look at programming technolog
including programming languages and software developm
strategies, as they apply to developing open-architecture, r
time, machine control applications. The importance
component-based technology and the impact on factory auto
tion will be examined. Finally, a summary will be presented co
sidering the influence that real-time requirements have on the
velopment of open architecture factory automation.

2 Open Architecture
An open-architecture is the definition of a set of compone

with well-defined behavior and well-defined relationships, and
which the definition is known to all. Often the definition is sta
dardized, either through a standards body or through de fa
adoption by a wide community. In some cases, component v
dors provide the definition. Desktop computing is one of the m
widely known examples of an open-architecture, where com
nents include display monitors, input devices, storage devices,
software functions provided by the operating system or appl
tions. Here, there is a combination of formal standards~e.g.,
VGA, IDE, SCSI, POSIX, CORBA! and de facto standards~e.g.,
BIOS, Win32, COM!. Table 1 details the names and purpose
01 by ASME Transactions of the ASME



p

t

u

h

i

e

o

a

o
o

n

r
r

l

c-
trol
ent-
de-
on

gic
g re-
th
the
ven

ues.
ap-

ser
to

and
ten
tary
ap-
ve

ore
trol
sive
Big
ally
of

try
der-
ny,
r-

it is
ch
ms.
ith
n to

hi-
h, in
time
to

en-
tion
oft-
re is
ta,
or

ded
ce.
h as
serv-
ven
ion

ing
he

-

in-
ter-
and

A is
y

table
ave
o-
many of the desktop open standards mentioned in this paper. I
open-architecture, in theory, any vendor can provide any com
nent. With de facto standards, in practice, some components
only be available through a single vendor. However, as long as
onerous barriers exist that prevent any component from being
vided by any party, the architecture is open.

Open-architecture systems differ widely in the degree to wh
they are ‘‘open,’’ in the intuitive sense of the word. In some cas
systems may be comprised of commodity hardware and op
source software, so that virtually every aspect of all componen
publicly visible. In other cases, systems may consist of propriet
components with de facto interfaces provided by the vendors
practice, open architecture systems balance the need for p
disclosure of component and interface specifications with the n
to protect intellectual property, so that the resulting system
market viability.

By definition, an open-architecture provides open access
real-time data and information that can be used to allow vert
integration of machines within the enterprise, and is critical
agile manufacturing. Middle-level information systems, call
Manufacturing Execution Systems~MES!, bridge the information
gap between the upstream and downstream systems. MES sys
can collect data from the machines to continually monitor a
improve the manufacturing process leading to increased prod
tivity and quality. MES track and manage all aspects of a job
the factory floor in near real-time. MES play essential supervis
and monitoring roles that link all levels of manufacturing an
business operations. For example, they identify bottlenecks
material shortages on the shop floor, and they provide near r
time performance of manufacturing systems along with comp
son with the past performance and projected results. Through
vertical integration, factory-floor information systems, which f
cus on the operation of mechatronic systems and on the contr
processes, can communicate both directly and regularly with fr
office information systems, which are used for design, proc
planning, quality control, accounting, forecasting, and other
source planning activities. As a result, upstream information s
tems are aware of important manufacturing details such as
availability of appropriate tools; records of past process; main
nance schedule; or the status of work in progress. A growing p
among manufacturers is to move to an Internet-enabled busi
requiring build-to-order vertical-integration manufacturing mod
that emphasizes low inventories, short cycle times and quick o
execution. With enterprises faced with these time-to-market p
sures, factory automation must be implemented quickly and mo
fied easily. The open architecture ability to reconfigure or exte
existing equipment to meet new needs is particularly powerfu
meeting these challenges.

The potential benefits from open-architecture controllers
clude improved time to market, increased production yield, low
product cost, increased production capacity, reduced invent

Table 1 Desktop open formal and de facto standards
Journal of Computing and Information Science in Engineering
n an
po-
may
no
ro-

ich
es,
en-
s is
ary
. In
blic

eed
as

to
cal
to
d

tems
nd
uc-
on
ry
d

and
eal-
ri-
this
-
l of

ont
ess
re-
ys-
the
te-
ush
ess
el
der
es-
di-
nd
in

in-
er

ory,

and optimization of production workforce. The potential produ
tivity benefits are not just for end-users and OEMs, but the con
vendors can also benefit from open-architecture and compon
based technology. Using a standard framework in which to
velop components, control vendors can concentrate
application-specific improvements that define their strate
market-share—as opposed to spending valuable programmin
sources reinventing and maintaining software ‘‘plumbing.’’ Wi
the shortage for skilled software professionals on the rise,
necessity to leverage commodity software technology is e
more compelling.

Open-architecture system development raises some iss
When systems are assembled using an open-architecture
proach, the responsibility to make systems work shifts to the u
or a systems integrator. When failures occur, it may be hard
determine which vendor’s component is causing the problem,
can lead to vendor ‘‘finger-pointing.’’ Open systems are also of
not tested to the same level of robustness that mature proprie
control systems have been, resulting in higher risk for some
plications. Further, many factory automation applications ha
strict safety and reliability requirements not faced by the m
widely known desktop computing architectures. Failure to con
equipment like machine tools or robots can damage expen
parts, fixtures, and tooling, and can cause injury or death.
automation end users are beginning to hold vendors contractu
liable for downtime cost, which can reach tens of thousands
dollars a minute. Additionally, unlike the desktop PC indus
where the hardware components are commodities, with the un
lying operating system software dominated by a single compa
the manufacturing industry is much more diversified with diffe
ent requirements for various specific applications. Therefore,
difficult to have a single model with real-time constraints whi
can be copied exactly to solve different manufacturing proble
In reality, a plug-and-play open-architecture, combined w
component-based reconfigurable software, is the only solutio
these various manufacturing problems.

Where safety and reliability are critical, the augmented arc
tecture has emerged as an alternative to purely open approac
which an open system acts as a front end to a proprietary real-
controller, through a controlled communication link. All access
the real-time controller is done via software provided by the v
dor that runs on the open system. This prevents any modifica
of the real-time controller, except as allowed by the vendor’s s
ware interface on the open system. The augmented architectu
intended to support the integration of controller and factory da
for applications such as data logging, file sharing, resource
consumable status monitoring, and diagnostics. It is also inten
to allow third parties to customize the graphical user interfa
Some access to real-time controller data may be allowed, suc
configuration parameters. In these cases, the open system is
ing as a replacement for the traditional proprietary interface gi
to systems integrators for configuring the machine for installat
or resale to customers.

The use of open-architectures is seen as vital to improv
manufacturing within numerous industry groups, including t
Open Modular Architecture Controller~OMAC! Users Group,
OLE for Process Control~OPC!, the Robotic Industries Associa
tion ~RIA!, and the Metrology Automation Association~MAA !.
OMAC is focusing on computer-numerical controllers~CNCs! for
machine tools, and general motion control for the packaging
dustry. OPC is an industry consortium focusing on standard in
face for the exchange of data between hardware field devices
automation/control or enterprise business applications. The RI
focusing on robotics, and the MAA is focusing on metrolog
equipment such as coordinate measuring machine and por
inspection arms. Internationally, European companies h
formed the Open System Architecture for Controls within Aut
MARCH 2001, Vol. 1 Õ 93



e
i

e

o
e

a

n

l
e
t

i
o
d

m

o

f

.
m
k
a

s
H

i
–
i
l

und
no

por-
the
ach
ust
ing
se,’’

olely
syn-

t of
ere
al.
ica-

ge is
can

ys-
de-

not
or-
up-
or-
.
ges
ni-

ion
in

he
on
im-
nd
ap-
ing
sing
xi-

me
lti-
se of
ed
tes
not
m-
e
an

lex
such
., plus
i-
are

ch-
m is
ro.
re-

real-
d:

re-

ead-

ext

fety
e-
e of
lt in
time
mation Systems~OSACA! consortium, and the Japanese ha
formed the Japan Factory Automation Open Systems Promo
Group ~JOP!.

OPC has been the leader in the realization of open syst
products with over 250 manufacturers producing OPC compl
products. OPC replaces custom drivers used to connect diffe
manufacturer’s IO field device products. Before OPC, a differ
driver was required to connect Intellution’s FIX to Allen-Bradle
PLCs, or Siemens PLCs or GE Fanuc PLCs. At one time, W
derware advertised over 200 such drivers. Now, one OPC driv
required to connect to any one of these PLCs running an O
server. Moreover, the Intellution FIX can be replaced by
USDATA or Wonderware product as these conform to the st
dard OPC client interface.

3 Performance Requirements for Open Factory Auto-
mation

General-purpose commodity software is often difficult to u
‘‘as-is’’ in factory automation systems as it may not offer a fi
enough degree of programmability, or offer enough performan
or it may hide system and resource policies and mechanisms
make them inaccessible to the software developer. These un
lying features are considered part of a black box, where a b
effort is provided to all users. For most programming applicatio
fair allocation of resources works adequately, however, this po
is not sufficient for factory automation, which needs finer acc
and control in order to attain real-time, high-performance, de
ministic operation. This section will review the real-time requir
ments of factory automation as seen from an open-architec
perspective.

3.1 Real-Time Measures. Factory automation reliability
demands a stronger threshold of assurance than just logical
gram correctness. Factory automation is based on numerous
nal control loops to manage the equipment. A control loop c
sists of a repeating cycle of operation: sample comman
setpoint, compare commanded to the sensor-measured actua
point, compute a goal-directed setpoint, and output setpoint to
actuator. This control loop cycle runs repeatedly at a fixed ti
interval, or period. All control loop timing constraints must b
satisfied in order to guarantee system reliability and progr
correctness.

The formal definition of hard real-time is in terms of time
bounded, reliable and deterministic execution, and differs fr
the industrial ad-hoc notions of hard, firm, and soft real-time. T
formal approach divides real-time systems into tasks with h
real-time deadlines or soft real-time deadlines. We define a
tory automation task as either a process or thread, where a pro
is an executing instance of an application on the computing p
form, and a thread is a path of execution within a process
periodic taskt i is characterized by a worst-case computation ti
Ci and a periodTi and must finish by the end of its period. Tas
are independent if they do not need to synchronize with e
other. A real-time system typically consists of both periodic a
aperiodic tasks. The hard-real-time factory automation tasks
the control loops. The case where a task must finish by the en
its period is a hard deadline, and a system must meet all h
deadlines, otherwise the system is not correct or deterministic.
soft upper bounds, the system attempts to meet all upper bou
but the system is still correct if some deadlines are missed.

In practice, factory automation is judged based on how fas
can perform control loops. The terms hard real-time, firm re
time, and soft real-time are ‘‘rule-of-thumb’’ timing qualifier
used to characterize the real-time performance of a system.
real-time is the most stringent control timing requirements, p
formance on the order of less that 1 millisecond resolution. F
real-time means control timing requirements on the order of 1
millisecond resolution. Soft real-time means meeting control t
ing, at greater than 10 millisecond resolution, with the potentia
94 Õ Vol. 1, MARCH 2001
ve
tion

ms
ant
rent
nt

y
n-
r is
PC
a
n-

se
e
ce,
and
der-
est-
ns,
icy
ss

er-
e-
ture

pro-
nter-
n-
ed

l set-
an
e

e
am

-
m

he
ard
ac-
cess
lat-
A
e

s
ch

nd
are
d of
ard
For
nds,

t it
al-

ard
er-
rm
10

m-
to

run into seconds or minutes. Non-real-time refers to backgro
tasks that can accept a laissez-faire scheduling policy with
catastrophic side effects should a deadline be missed. An im
tant distinction should be made. The factory automation use of
hard, firm and soft real-time terms misrepresents the fact that e
is in fact hard-real-time and all factory automation systems m
maintain all deadlines, and instead indicate control loop tim
responsiveness, and should be termed, ‘‘hard real-time respon
‘‘firm real-time response,’’ and ‘‘soft real-time response.’’

To evaluate real-time correctness, tasks cannot be judged s
as independent entities, as tasks need to communicate and
chronize with each other. Communication is a major aspec
factory automation in determining real-time correctness, wh
synchronization is a form of communication and data is a sign
Several metrics exist to measure the effectiveness of commun
tion. Latency is defined as the elapsed time before a messa
acknowledged. Throughput is defined as the rate one process
send information to another process, especially important for s
tems that share large amounts of data. Factory automation
mands real-time, deterministic communication so that latency,
throughput is the fundamental determinant of communication c
rectness. All communication latencies must meet or better an
per bound time interval. Another measure of communication c
rectness demands that communicating tasks do not deadlock

Communication between tasks in factory automation ran
from IO subsystems in machine controllers to remote commu
cations for monitoring operations on the shop floor. IO integrat
is a major task in developing factory automation and the trend
factory automation IO integration is towards the networking of t
IO to simplify wiring, programming, and maintenance based
open, standard protocols and equipment. IO networks offer s
plified cabling, which alone eliminates much of the cost a
greatly simplifies troubleshooting as diagnostics can now be
plied at once to all equipment on the network, instead of hunt
for the broken component. Network research focuses on u
statistical, algorithmic and neural network approaches for ma
mizing bandwidth while insuring real-time performance@4–6#.

Although high-speed performance is important in a real-ti
control system, reliability and deterministic behavior are the u
mate system measures that cannot be sacrificed at the expen
optimizing performance. Factory automation will be consider
real-time correct if and only if every hard real-time task execu
deterministically bounded by fixed response time and does
deadlock. Prevention of deadlock is an important part of progra
ming multi-threaded applications. Historically, simple OS lik
DOS were single threaded and could deadlock only by entering
infinite loop. Modern OS are multithreaded, and as more comp
systems require priority-based synchronization mechanisms
as, semaphores, timers, events, message queues, mutex, etc
ability to handle priority inversion. To avoid deadlock in a mult
threaded environment, many OS kernels support either a softw
or hardware watchdog service to monitor operation. The wat
dog operates like a countdown timer, and as long as the syste
functioning properly, it will reset the timer before it reaches ze
Should the watchdog timer reach zero, appropriate action to
solve the deadlock can be taken. In summary, a system is
time correct if and only if the following requirements are satisfie

• processes execute deterministically within upper bound
sponse time,

• processes do not deadlock or can mediate and resolve d
lock,

• interprocess-communication, interrupt latency, and cont
switching execute within upper bound response times.

Methods to improve design correctness and improve the sa
and reliability of manufacturing controller operation through d
tection of real-time faults is an ongoing research area. The us
better modeling techniques in early system design can resu
time and cost savings in system integration due to better real-
Transactions of the ASME



i

n

e

p
i

e
h

g

u

t

m
o
g
i

u

i
o

-

p
u

,

s

o
n
o

m
s
i

as
m-

sed
eal-
er-

oft-
tem,
on-
sion
pa-

-
ave
and
any
wer
the

ave
are
ary
be

ith

ated

sarily
serv-
ing,
for
in-

pri-
.
ity
ed-
idely
ard-

n
sys-
correctness analysis and early problem identification@7–11#. Bet-
ter run-time capabilities could improve operation in spite of fa
ure by embedding into the programming languages, OS, or
kernel the ability to detect and handle timing errors caused
variations in processing determinism due to interrupt serv
caching, pipelining, and bus arbitration within the system@12–
14#.

3.2 RT Scheduling. Scheduling specifies how access to o
or more reusable computational resources will be granted.
quirements for scheduling within factory automation equipm
will be reviewed, while higher-level shop floor production sche
uling will be considered outside the scope of this paper. The
mary scheduling within a factory automation controller is for d
patching tasks to run on the processor~s!. General-purpose
commodity OS only provide time-sliced and round robin proc
sor scheduling, which are non-deterministic algorithms and t
unacceptable for factory automation. Factory automation requ
pre-emptive priority-based and/or deadline-based schedulin
tasks to guarantee real-time determinism.

Scheduling must insure stability under transient overload, s
as when a system is suddenly overloaded by arrival of new eve
Factory automation should be able to specify real-time con
loop timing requirements with scheduling parameters such
deadlines and periods. Unfortunately, much of the real-ti
scheduling is still ad-hoc and manual within factory automati
Rate monotonic scheduling~RMS! is an example of a schedulin
paradigm that could be used to provide deterministic real-t
scheduling@15,16#. RMS would be of great help, but RSM is no
widely available on many RTOS. Instead, most RTOS only s
port task priorities as a means of defining scheduling criteria.

To this day, many factory automation systems handle poten
transient overload by using excess capacity and exhaustive
ing. For these reasons, real-time systems are expensive and
cult to maintain. There is ongoing research, with tools slow
emerging, to advance the state of the art in factory automation
automating the support for execution time and schedulab
analysis and support to allow independent real-time software c
ponents to determine their resource needs and to negotiate fo
resources they require@17–19#.

3.3 Real-Time Operating Systems. Based on the determin
istic criteria, factory automation has a set of processing requ
ments that are different from those provided by a general purp
operating system. For instance, fairness is not an issue in real-
control. Instead, hard-real-time factory automation tasks are
manently dedicated to the hardware and are guaranteed to r
fixed periodic intervals. Thus, factory automation must run
Real-time Operations System~RTOS! that provides deterministic
high performance and complete access for processor alloca
memory management, communication, and thread scheduling
insure that a controller or manufacturing applications operate
hard-real-time, a RTOS would be expected to be optimized
provide the following services:

• High resolution timers
• Multi-threaded and preemptive with support for thread pri

ity and/or predictable thread scheduling such as rate-monoto
• A system of priority inheritance must exist for the detecti

and prevention of priority inversion
• Support for predictable process and thread synchroniza

mechanisms
• Support for a virtual address space, but allows real-ti

threads to be locked into memory to prevent non-determini
paging delays. Paging has a lower priority level than the real-t
priority process levels so that virtual memory can still be us
without interfering with any real-time processing

• Each thread preemption is based on a priority scheme, w
threads at the same priority level run in a round-robin fashion w
each thread provided a quantum or slice of execution time w
time quantum potentially in microseconds
Journal of Computing and Information Science in Engineering
il-
OS
by

ce,

e
Re-
nt
d-
ri-

s-

s-
us

ires
of

ch
nts.
rol
as
e

n.

me
t
p-

tial
test-
diffi-
ly
for

lity
m-

r the

ire-
ose
time
er-
n at

on

tion,
. To

in
to

r-
ic
n

tion

e
tic

me
ed

hile
ith
ith

• Fast context switching, small interrupt latency

4 Factory Automation PC Platform Technologies
Open control for high-performance factory automation, such

a CNC, typically requires some modifications to desktop PC co
puting platforms. Figure 1 illustrates the three main PC-ba
control architectures used to handle high-performance, hard-r
time, factory automation where response times/control loop p
formance is under 10 milliseconds. The first architecture is s
ware servoing based that runs 100% on the operating sys
usually under a RTOS. Another architecture is still 100% PC c
trol running a general purpose OS, but has real-time exten
kernel. The third architecture entails putting the control on a se
rate PC co-processor board.

4.1 PC-Based Real-Time Control. PC-based hard-real
time control depends on insuring that hard-real-time tasks h
higher or RT priority and that the task and data are loaded
locked into on-board physical memory, to guarantee against
delay caused by page faulting. Soft real-time tasks can have lo
priorities and may be allowed to page fault depending on
timing constraints.

One of the primary considerations when using a PC that h
hard-real-time threading is interaction with the related hardw
and device drivers. The behavior of these devices can v
greatly, and compliance and performance must accurately
tested. Microsoft manages its hardware certification testing w
its Windows Hardware Quality Labs~WHQL!, which provides
vendors with published specifications and standardized autom
test suites for testing and validating their hardware@20#. Although
stringent, these tests measure compliance and do not neces
test performance. Because video and network cards have ob
able delays of 30–40 milliseconds during network stress test
Rockwell Automation developed additional certification tests
their products to further certify performance when using the W
dows NT for soft-real-time control applications@21#. Technology
based on this architecture are used in place of traditional pro
etary PLC-based systems for soft-real-time plant floor control

Microsoft Windows CE is also a RTOS as well as a commod
OS product. However, its application is intended for the emb
ded market, such as the handheld, diskless PCs, and is not w
available on general-purpose PCs. Since there is no de facto h
ware platform, it is difficult for third party factory automatio
providers to develop products, such as IO boards or visions

Fig. 1 Primary PC-based control system architectures
MARCH 2001, Vol. 1 Õ 95



P
b
d

l

m

e
r

l

m
f

n
n

-

p
c
a
r
r
o
i
o
o
e
w

a

i

r

c
e

a

u-
ach

tion
rial
time
suit-
om
-

S a
s

t
in-
,

for
mo-
and
hese
ufac-
and
pre-
elli-
tion.
pli-

n-
of

ese
ro-

ors,
uch

e of
tant

in

tion
ing
om-
both
ases,
be
t be
be
ila-
of
the
tems. Some factory automation vendors are developing
compatible platforms with Windows CE as the installed OS,
these are not in the commodity volumes as in the desktop in
try, so the prices are not as competitive. Further, device driv
developed for mainstream Windows don’t work with Window
CE, which limits the selection of peripheral equipment, as wel
increases the costs.

4.2 PC-Based Real-Time OS Extensions.Both Linux and
Windows NT have extensions available to make it a RTOS, u
ally based on a strategy of masking the fundamental PC ti
interrupt. This works by modifying the OS kernel so that all ca
to enable/disable interrupts and the interrupts themselves ar
tercepted by a real-time scheduler and interrupt handler. Use
threads are first installed as dynamically loaded kernel modu
Upon every timer interrupt, the RT scheduler runs real-time u
threads according to their priority. Only when all real-time threa
are idle does the scheduler pass control back to the norma
kernel. There are problems with this approach. Many devices
only tolerate interrupts being blocked for a short amount of ti
before losing data. The general-purpose services and API o
primary OS are not usually available, thus eliminating the use
the greater selection of PC programming and diagnostic tools

RT-Linux was the first such popular extension to Linux bas
on the timer masking to allow real-time OS features@22#. The
DIAPM Real-Time Linux application Interface~RTAI! provides
similar capabilities. It is based on the DIAPM Real-Time Har
ware Abstraction Layer~RTHAL! @23#. KU Real-Time Linux
~KURT! provides normal Linux user process with better timi
resolution and control over scheduling than the standard Li
kernel. Although KURT is not strictly deterministic, it may be
better choice for ‘‘firm real-time’’ applications@24#. The NIST
Enhanced Machine Controller~EMC! is an example of an open
architecture CNC controller exploiting real-time Linux, ope
source, and community software development@25#. When running
actual equipment, real-time Linux is used to achieve the determ
istic hard-real-time computation response rates required~200 mi-
croseconds is typical!.

Windows NT is suitable for firm-real-time control, but interru
service for some devices can be protracted, and jitter can o
within the running control system. Windows NT can run a re
time kernel like TenAsys INTime or VenturCom RTX or Hype
kernel from Imagination Systems, Inc. These systems add a
time kernel that intercepts the interrupt from the PC clock bef
the Windows operating system receives it for scheduling real-t
tasks local to the kernel. TenAsys INtime provides a mem
protection scheme between its real-time kernel and the Wind
NT operating system kernel. Proprietary real-time kernel ext
sions are also used to streamline system development by allo
PC-hosting of real-time targets. An example of this type of re
time PC development system is Mathwork’s Matlab running Re
Time Workshop or xPC.

4.3 Co-Processor Board. This design alternative uses a tr
ditional PC and couples it with a coprocessor board in the sa
platform backplane. The platform runs a typical window-bas
Operating System to provide the controller a human-mach
interface that can potentially offer other typical desktop proce
ing chores running in the background or when the machine c
troller is not operating. This yields benefits of real-time cont
while using the database, communications, and HMI capability
the PC. The use of bus-mastering coprocessor boards are po
because they provide extremely high-speed communication
trol across the bus transparently to the operation of the gen
purpose host operating system. The use of this design provide
instant ‘‘firewall’’ against secondary impairment from the host
insure real-time controller operation on the coprocessor bo
Numerous coprocessor boards are available in the market, suc
96 Õ Vol. 1, MARCH 2001
C-
ut
us-
ers
s
as

su-
er

lls
in-

RT
les.
ser
ds
OS

can
e
the
of

.
ed

d-

g
ux

a

n

in-

t
cur
l-
-
eal-
re

me
ry
ws
n-
ing

al-
al-

-
me
ed
ne-
ss-
on-
ol
of

pular
on-
ral-
s an
to
rd.

h as,

Delta Tau, Aerotech, LabView products from National Instr
ments, or Galil products. The main disadvantage to this appro
is the increased cost for the additional hardware.

The coprocessor board does not have to be an actual mo
control product, but instead can be a full or half-sized indust
single board computers that is loaded with an embedded real-
operating system. Examples commercial and research RTOS
able for embedded coprocessor platforms include: VxWorks fr
WindRiver Systems Inc.; LabView RT from National Instru
ments; Embedix RealTime, a hard real-time Linux OS; DR-DO
real-time DOS OS also from Lineo; QNX from Software System
Ltd.; Chimera@26#; and Microsoft Windows CE; and Microsof
Windows Embedded NT with real-time extensions products
cluding: INtime from TenAsys Corp., RTX from VenturCom
Inc., Hyperkernel from Imagination Systems, Inc.

5 Real-Time Programming of Manufacturing Systems
An open programming language environment is critical

rapid integration of mechatronic devices that include stepper
tors, DC and AC motors, laser and vision sensors, force
torque sensors, tactile sensors, pneumatic grippers, etc. T
mechatronic devices are essential components of many man
turing systems such as robot manipulators, CNC machines,
automatic assembly systems. For example, according to its
programmed software implementations, a robot can make int
gent decisions and actions based on external sensory informa
Experience indicates that a large portion of a typical robot ap
cation program is non-motion related@27#. Programs deal mainly
with initialization, communication, synchronization, sensory i
formation processing, and error checking and correction. Much
the intelligence of a manufacturing system is derived from th
sophisticated software implementations. Requirements for p
gramming of manufacturing systems such as robot manipulat
CNC machines, and measurement machines are in general m
higher than those programming in desktop computers becaus
real-time and special constraints with machinery. Some impor
features for programming of manufacturing systems are listed
Table 2.

Research and application experience of industrial automa
and manufacturing systems indicate that an ideal programm
language for manufacturing systems must be a sophisticated c
puter programming language. The language should appeal to
sophisticated expert programmers and novice users. In most c
sophisticated users will write high-level functions that can
readily used by less experienced users. The language mus
deterministic for real-time programming. The language should
interpretive with a quick system response. The program comp
tion presents a serious problem for real-time manipulation
mechatronic systems. For a real-time manufacturing system,

Table 2 Important features in languages for programming of
manufacturing systems
Transactions of the ASME



t
v

i
c
,

a

b

r

t
u
m

c
s
t
e
e
p

c

a

m

t

a
u

1

t

C

d

va
m in

s.
ns

are
be-
ten

ur-
fac-
x-
ry

ent
me
ly.
facto
bot
ose
n Al-
und

the
the

-
d in
C,

ect
bot

s are
s of

l

ta-
s, in-
S.
nvi-
uring
e
-
ted
g

an
om-
e in
n-

y’’
it of
ell-
es
re-

mi-
pro-
uct
t has
re

g

ently
trib-

here
external environment may be different at each execution, so
testing scenario may not be repeatable. During debugging
testing, it is impractical to restart a program from the very beg
ning every time a change is made or a problem is diagnosed.
programming environment should support command or func
execution interactively. Although the language is interpreti
some time critical code such as control algorithms for servo lo
might be compiled for fast execution. Therefore, interpret
scripts should be able to interface to binary objects. It is typi
that multi-tasks or threads are executed for servo update
checking, user interface, etc. The language should support con
rent multi-task processing. In addition, the language should b
superset of an established computer programming language r
than a subset. Programming of manufacturing systems can
draw upon a large body of existing user and code base. The
language should be an open language with an international s
dard so that it will keep abreast advance of the new technolo
The language should be easy to learn. It will be used not only
programming of manufacturing systems, but also for daily p
gramming tasks. The object-oriented nature of the language
ensure that the code is relatively easier to develop, maintain,
reuse. Programming of manufacturing systems should be sim
to very high-level shell programming. Application programs a
created not by writing large programs starting from scratch.
stead, they are combined by relatively small components. Th
components are small and concentrate on simple tasks so tha
are easy to build, understand, describe and maintain. The lang
should support modular programming. A set of high-level co
mands and functions developed by experienced researchers
engineers then can be readily used by novice users and fa
personnel. The programming environment should support u
friendly graphical interface and visual programming as illustra
in LabView. However, an entirely visual based programming
vironment without a base of procedural programming languag
difficult to program for complicated manufacturing tasks, es
cially for sensor fusion. The language should be supported
different platforms such as Windows and Linux so that appli
tion programs will be portable. The language should
manufacturing-system-independent so that high-level applica
programs can be developed to relieve programmers of the tas
learning different programming languages for different manuf
turing systems. It will enable integration of mechatronic devic
from different vendors for consistent interfaces external to m
chinery. An integrated manufacturing system often consists
several subsystems such as a workcell with multiple robot
nipulators. The language should support programming of sev
manufacturing systems concurrently. To ease integration wi
manufacturing executive system and other information syste
manufacturing systems are often networked. The language sh
support secure network computing with industrial standard n
working protocol TCP/IP. It is desirable that a program can
dynamically downloaded through the network and executed
curely so that the manufacturing system can be adaptive to
external sensory information. Many complicated algorithms
used in manufacturing systems, so it is desirable that the lang
supports advanced numerical features such as matrix comp
tions similar to matrix features in Matlab. It is also desirable to
able to perform function block-based programming. IEC 6113
is visual, function block-based, programming standard for ind
trial control. In this paradigm, function blocks are the softwa
equivalent of integrated circuits that are wired together to bu
control systems@28#.

Development of a language environment for real-time opera
of manufacturing systems takes a deliberate effort. Gene
purpose compiler-based system languages such as C and11
are not suitable for this purpose. The Java programming langu
is more portable because a machine independent interme
bytecode is generated from a Java program. The bytecode
can be executed by a Java virtual machine. However, garb
Journal of Computing and Information Science in Engineering
the
and
in-
The
ion
e,
op
ve
al
IO

cur-
e a
ther

then
ase
tan-
gy.
for
o-
will
and
ilar
re
In-
ese
they
age
-
and

tory
er-

ed
n-
is

e-
in

a-
be
tion
k of
c-
es
a-
of
a-

eral
h a
ms,
ould
et-
be
se-
the
re
age
uta-
be
-3

us-
re
ild

ion
ral-

age
iate

then
age

collection is typically non-deterministic. The early version of Ja
with unrestricted garbage collection presents a serious proble
real-time computing for applications in manufacturing system
Study of memory-allocation behavior of embedded applicatio
written in Java is still an active research topic@29#. General-
purpose interpretive languages such as Perl, Python, Tcl/TK
also not desirable for programming of manufacturing systems
cause of their lack of interactive user interface. The code writ
in these glue languages are difficult to read and maintain.

Most programming languages for manufacturing systems c
rently in use are associated with proprietary commercial manu
turing products with specific hardware configurations. For e
ample, like the pre era of Unix/C computing environment, eve
robot has its own programming system or language with differ
notations and symbols. Integration of different robots in the sa
production line is difficult and the training of personnel is cost
No single robot-independent language has prevailed as a de
standard for robot programming. In general, the evolution of ro
programming languages follows the evolution of general-purp
computer programming languages. Robot languages based o
gol, APL, Lisp, Basic, Fortran computer languages can be fo
in the 1970s and early 1980s. Robot languages developed in
1980s are primarily based on Pascal that was popular then. In
late 1980s and 1990s, C, C11, and Ada are the prevalent com
puter languages. Although most robotic systems are now code
C, C11, or Ada, no existing robotic system behaves like
C11, or Ada from the user’s point of view. The RCCL~Robot
Control C Library! is such an example@30#. In this system, the
robot motion-related C library is linked when an executable obj
code is generated in a Unix environment. Open-architecture ro
controllers and standard interfaces for sensors and actuator
recognized as critical research issues for emerging application
robotics and intelligent machines@31#. The popular commercia
robot languages include KAREL, V11, VAL II, UNIVAL,
V11. CNC high-level languages are APT or a CAD represen
tion that is post-processed into machine-executable language
cluding RS274D or BCL. The prevalent CMM language is DMI
For programming of manufacturing systems, a Ch language e
ronment has been developed and used to control a manufact
workcell with two industrial robot manipulators under real-tim
LynxOS @32–34#. Ch is a superset of C interpreter with all fea
tures of C90 as well as new features in C99, objected-orien
features in C11, and salient features from other programmin
languages and software packages.

6 Real-Time Component Technologies
Since its inception, the first and easiest step to achieving

open-architecture was to provide open access to controller c
ponents, which is now a widely-established paradigm availabl
most commercial controllers. The next step in the ope
architecture technology evolution is towards a ‘‘plug-and-pla
component-based model. A component is a self-contained un
software, possibly combined with hardware, which provides w
defined functionality and well-defined connections or interfac
exposed for communication. Components are designed for
peated use in developing systems, either with or without custo
zation. By reusing existing components, applications can be
duced more quickly, thus reducing the time to market. As prod
lifecycles continue to shorten, component-based developmen
the potential to help improve productivity and reduce softwa
costs.

To be effective, components must provide the followin
features:

• Location independence so that components can transpar
run in the same process, same platform, or across a dis
uted network.

• Platform independence so that components interact as if t
were a single type of platform.
MARCH 2001, Vol. 1 Õ 97



s
a

l

o

h
t

n

t

e

O
o

o

n

e
n

p

o
w
t

-
s

x

e

ys-
ac-
life
end
l in
ing,
and
hat
bil-
t of
tech-

and
nu-
hni-

cal
op-
se;

ic
nd
of

ant
cult

uts
eer-

ven-
al
ata-
of

hese
with
tical
nce
s of
tan-
duct

its
e
pro-
usly
ac-
-
less
out

t of
. S.
ple
l
r-
pro-
p
con-
gh

t new
rom

the
to
wn-
ies,

on
e-

ents,
le-

ased
inte-
• Programming language independence so that component
interact regardless of the component implementation l
guage

• Ease of use for deployment and customization
• Support for multiple languages and environments
• Less-skilled programmers must be able to assemble app

tions
• Tools must be available to catalog the various compone

and for composibility to assemble and test new applicati
built from components

• Interchangeable to scale performance, depending on the
plication

There exist several component-based controller developm
products, e.g., ControlShell from Real-Time Innovations, a
LabView from National Instruments, that achieve many of t
desired goals of component-based technology. Unfortuna
these products are proprietary and the resulting components
not interoperable so interchangeable ‘‘plug-and-play’’ is impo
sible @35#. Although neither component model was originally i
tended to be used in the real-time machine control, both are ev
ing into this application domain. Because of the enormity of
COM market-presence, many controller products, such as L
View, will accept COM components within some aspect of th
development environment.

COM is the Microsoft architecture for local interaction of com
ponents and the Distributed Common Object Model~DCOM! pro-
vides the methods for remote interaction of components. C
has evolved from its origins as a mechanism to let applicati
dynamically perform Object Linking and Embedding~OLE!.
COM provides many services to facilitate component technol
including, location transparency, security, registry, naming, a
type information are included in any 32 bit Windows operati
systems, at no additional charge. The primary benefit to COM
zero sacrifice on performance for within-process component in
action. For integration of factory automation with the busine
enterprise, COM1 adds the Microsoft Transaction Server~MTS!
that provides services for transactional guarantees, concurr
control, instance lifecycle management, database session ma
ment, and security. DCOM is the basis for distributed commu
cation, and is designed for use with multiple network transpo
including TCP, UDP and HTTP. DCOM is based on Open So
ware Foundation’s DCE-RPC specification, and is not real-tim
OPC has been the leader in the realization of COM-based o
system manufacturing communication products. Wind Rive
VxDCOM provides a third-party implementation for developin
real-time DCOM applications.

CORBA is a specification from the Object Management Gro
~OMG! that defines a software bus, the Object Request Bro
~ORB!, for platform-independent and language-independent c
munication and execution between software objects. CORBA
designed by the OMG consortium to specifically to handle
problem of integrating distributed applications running on a m
of operating systems running on mainframes, workstations and
desktop machines. CORBA was not originally intended for re
time applications, but can be used in soft-real-time factory au
mation with certain caveats@36#. The Real-Time CORBA speci
fication was developed to overcome the non-determini
behavior of CORBA and provide real-time functionality@37#.
This standard tackles the key issue of end-to-end predictab
across a CORBA system, and provides its solution in terms
priority control, synchronization, protocol selection and oth
forms of resource control@38#. Examples of Real Time CORBA
products include HARDPack from Lockheed-Martin, ORBE
press, Vertl/Expersoft Orb, e*ORB, and the Highlander port
VisiBroker to an RTOS.

7 Summary
The next generation of manufacturing systems must be agil

better adapt to changing markets and evolving technologies, w
98 Õ Vol. 1, MARCH 2001
can
n-

ica-

nts
ns

ap-

ent
nd
e

ely,
are

s-
-
olv-
he
ab-
ir

-

M
ns

gy
nd
g
is

ter-
ss

ncy
age-

ni-
rts,
ft-
e.
en-
r’s
g

up
ker
m-
as

he
ix
PC

al-
to-

tic

ility
of

er

-
of

to
hile

still focusing on cost and quality. Open architecture control s
tems are a key enabling technology for realizing agile manuf
turing through increased flexibility and reduced automation
cycle costs. The open architecture ability to reconfigure or ext
existing equipment to meet new needs is particularly powerfu
meeting these challenges. Life cycle costs, including purchas
integration, customization, training, maintenance, diagnostics
repair, will be positively affected by the competitive pressure t
arises when proprietary barriers are eliminated and interopera
ity standards are introduced. This paper reviewed a wide se
real-time open-architectures and component-based tools and
nologies that are on the forefront of agile manufacturing.

On the horizon, there remain important business issues
technical problems to be solved before open architecture ma
facturing systems are to become a prevalent technology. Tec
cal problems include achieving deterministic execution of criti
control tasks while leveraging desktop computing hardware,
erating systems, and software not ideally suited to this purpo
attaining high levels of reliability when moving from a monolith
model to one in which system integration plays a major role; a
increasing the communication efficiency that impairs the design
truly distributed real-time systems. There are several signific
business obstacles. Product differentiation becomes more diffi
with the loss of unique~albeit proprietary! interfaces. Skill sets
need to shift away from in-house development of soup-to-n
turnkey systems to systems integration, where software engin
ing becomes more important. Perhaps most significant is the
dor’s loss of control over deployed products, whose origin
nameplates now cover untested combinations of aftermarket c
log components. Who is responsible for the injury or death
machine operators when something goes wrong? To meet t
challenges, industry must adopt new practices when dealing
open architecture controllers. Conformance and testing are cri
to successful operation. There is a need for public conforma
and test suites to be developed for which users and provider
open architecture technology could test products against the s
dard open architecture specifications, and hence ensure pro
fidelity as well as interoperability.

Today, the evolution of open architecture controllers and
application in manufacturing is still in its infancy. However, th
advent of PC-based open architecture control has already
duced opportunities and exposed latent markets that previo
went unfulfilled. One market that has benefitted is small manuf
turing enterprises~SMEs!, companies with fewer than 500 em
ployees. Most of these companies are quite small, employing
than 30 people. These companies have traditionally been left
of the CNC user market due to high costs of entry. The impac
this technology insertion is expected to be significant. In the U
alone, there are 381,000 SMEs, which employ 12 million peo
~2/3 of the manufacturing force! and account for half of the tota
U. S. manufacturing value@39#. Some of these small manufactu
ers have begun open-source software projects to develop free
grams for CAD, CAM, and CNC@40#. These groups have set u
Internet sites where developers can collaborate and post new
tributions. Software is released to the user community throu
development snapshots, and users are encouraged to submi
material and requests for features or improvements. Aside f
the obvious advantage of free software, advantages include
ability to customize the software for specific needs, or port it
new platforms. Disadvantages include the higher degree of o
ership users must accept, due to the explicit lack of warrant
and the developmental nature of the work.

Ultimately, open-architecture technology is but a first step
the path to new and more intelligent manufacturing control. R
search into the use of smarter cooperative components, or ag
is being applied in a variety of architectures to design and imp
ment distributed intelligent manufacturing systems@41#. Much re-
search remains to resolve key issues related to component-b
open-architecture systems, such as system configuration and
Transactions of the ASME



n

n
n

J

N

l
.

s
r

o

n

f

h

s

me
EE

by a

s,’’

ix

e-

ha-

ct-
an

-

nd
nd

e

A

for
ors

nu-
gration, communications, legacy issues and standardized i
faces. However, the prospect for these controllers based on
rivatives of component-based open-architecture technology
especially promising, offering unlimited potential for intellige
controllers that are self-configuring, learning and self-organizi

References
@1# Proctor, F., and Albus, J., 1997, ‘‘Open Architecture Controllers,’’ IEE

Spectr.,34, No. 6, pp. 60–64.
@2# Wright, P. K., and Greenfeld, I., 1990, Open Architecture Manufacturing: T

Impact of Open-System Computers on Self-Sustaining Machinery and the
chine Tool Industry, inProc. Manufacturing International ’90, 2, pp. 41–47.

@3# Wright, P. K., 1995, ‘‘Principles of Open-Architecture Manufacturing,’’
Manufac. Syst.,14, No. 2, pp. 187–202.

@4# Hong, S. H., and Kim, W. H., 2000, ‘‘Bandwidth Allocation Scheme in CA
Protocol,’’ IEE Proc.—Control Theory Appl.,147, No. 1, pp. 37–44.

@5# Zuberi, K. M., and Shin, K. G., 1997, ‘‘Scheduling Messages on Contro
Area Network for Real-Time CIM Applications,’’ IEEE Trans. Rob. Autom
13, No. 2, pp. 310–316.

@6# Cavalieri, S., and Mirabella, O., 1996, ‘‘Neural Networks for Process Sch
uling in Real-Time Communication Systems,’’ IEEE Trans. Neural Netw.,7,
No. 5, pp. 1272–1285.

@7# Lin, E. Y.-T., and Zhou, C., 1999, ‘‘Modeling and Analysis of Message Pa
ing in Distributed Manufacturing Systems,’’ IEEE Trans. Syst. Man Cybe
29, No. 2, pp. 250–262.

@8# Stoyenko, A. D., Marlowe, T. J., and Laplante, P. A., 1996, ‘‘A Descripti
Language for Engineering of Complex Real-Time Systems,’’ Real-Time Sy
11, No. 3, pp. 245–263.

@9# Fidge, C., Kearney, P., and Utting, M., 1997, ‘‘A Formal Method for Buildin
Concurrent Real-Time Software,’’ IEEE Software,14, No. 2, pp. 99–106.

@10# Ancilotti, P., Buttazzo, G., Di Natale, M., and Spuri, M., 1998, ‘‘Design a
Programming Tools for Time Critical Applications,’’ Real-Time Syst.,14, No.
3, pp. 251–267.

@11# Bradley, S., Henderson, W., Kendall, D., and Robson, A., 1994, Designing
Implementing Correct Real-Time Systems, in H. Langmaack, W-P. de Roe
and J. Vytopil, Eds.Formal Techniques in Real-Time and Fault-Tolerant Sy
tems FTRTFT ’94, Lubeck, Lecture Notes in Computer Science 863, pp. 228–
246, Springer-Verlag.

@12# Stewart, D. B., and Khosla, P. K., 1997, ‘‘Mechanisms for Detecting a
Handling Timing Errors,’’ Commun. ACM,40, No. 1, pp. 87–94.

@13# Kenny, K., and Lin, K-J., 1991, ‘‘Building Flexible Real-Time Systems Usin
the Flex Language,’’ IEEE Computer,24, No. 5, pp. 70–78.

@14# Kligerman, E., and Stoyenko, A. D., 1986, ‘‘Real-time Euclid: A Language
Reliable Real-Time Systems,’’ IEEE Trans. Software Eng.,12, No. 9, pp.
941–949.

@15# Liu, C. L., and Layland, J. W., 1973, ‘‘Scheduling Algorithms for Multipro
gramming in a Hard Real Time Environment,’’ JACM,20, No. 1, pp. 46–61.

@16# Sha, L., Rajkumar, R., and Sathaye, S., ‘‘Generalized Rate-Monotonic Sc
uling Theory: A Framework for Developing Real-Time Systems,’’ Proc. IEE
82, No. 1, pp. 68–82.

@17# DiNatale, M., and Stankovic, J., 1994, ‘‘Dynamic End-to-End Guarantee
Dist. Real-Time Systems,’’inProc. 15th IEEE Real-Time Syst. Symposium, pp.
216–227.

@18# Garcia-Fornes, A., Terrasa, A., Botti, V., and Crespo, A., 1997, ‘‘Engineer
Tool for Building Hard Predictable Real-Time Intelligent Systems,’’ J. En
Appl. Artif. Intell., 14, pp. 369–377.

@19# Deng, Z., Liu, J. W.-S., Zhang, L., Seri, M., and Frei, A., 1999, ‘‘An Ope
Journal of Computing and Information Science in Engineering
ter-
de-
is

t
g.

E

he
Ma-

.

ler
,

ed-

s-
n.,

n
st.,

g

d

and
ver,
s-

nd

g

or

-

ed-
E,

in

ing
g.

n

Environment for Real-Time Applications,’’ Real-Time Syst. J.,16, No. 2/3,
pp. 155–185.

@20# Microsoft. Windows Hardware Quality Labs, http://www.microsfot.com/
hwtest/default.asp.

@21# Rockwell Automation—Allen Bradley, 1998,Using the Windows NT Operat-
ing System for Soft Reqal-Time Control-Separating Fact from Fiction, White
Paper.

@22# REALTIMELINUX.ORG., The Real time Linux Portal, 2000. URL: http://
www.realtimelinux.org.

@23# Mantegazza, P., Bianchi, E., and Dozio,DIAPM RTAI, 2000. URL: http://
www.aero.polimi.it/projects/rtai/.

@24# Hill, R., Srinivasan, B., Pather, S., and Niehausc, D., 1998,Temporal Resolu-
tion and Real-Time Extensions to Linux. URL: http:///www.ittc.ukans.edu/
kurt/.

@25# Proctor, F., 2000, The Enhanced Machine Controller, URL: http://
www.isd.mel.nist.gov/projects/emc/emc.html.

@26# Stewart, D., Schmitz, D., and Khosla, P., 1992, ‘‘The Chimera II Real-Ti
Operating System for Advanced Sensor-Based Control Applications,’’ IE
Trans. Syst. Man Cybern.,22, No. 6, pp. 1282–1295.

@27# Cheng, H. H., and Penkar, R., 1995, ‘‘Stacking Irregular-Sized Packages
Robot Manipulator,’’ IEEE Robotics and Automation Magazine,2, No. 4, pp.
12–20.

@28# International Electrical Commission, IEC, Geneva, 1993,IEC 1131-3, Pro-
grammable Controllers—Part 3 Programming Languages.

@29# Petit-Bianco, A., 1998, ‘‘Java Garbage Collection for Real-Time System
Dr. Dobb’s Journal, No. 290, pp. 20–29.

@30# Hayward, V., and Paul, R., 1986, ‘‘Robot Manipulator Control Under Un
RCCL: A Robot Control ‘‘C’’ Library,’’ Int. J. Robot. Res.5, No. 4, pp.
94–111.

@31# Bekey, A. G., 1997, ‘‘Needs for Robotics in Emerging Applications: A R
search Agenda,’’ IEEE Robot. Autom. Mag.,4, No. 4, pp. 12–14.

@32# Cheng, H. H., 1996, ‘‘Plug-and-Play Open Architecture Integration of Mec
tronic Systems for Agile Manufacturing,’’ inProceedings Nov. 20–21, SPIE,
Open Architecture Control Systems and Standards, 2912, pp. 136–145, Bos-
ton, MA.

@33# Cheng, H. H., and Hu, X., 2000, ‘‘Plug-and-Play Open-Architecture Obje
Oriented Real-Time Mechatronic System Integration and its Applications in
Automatic Manufacturing Workcell,,’’ inProc. of NSF Design and Manufac
turing Grantees Conference, Vancouver, Canada.

@34# Cheng, H. H., 2000,The CH Language Environment, URL: http://
iel.ucdavis.edu/CH.

@35# Chung, E., Huang, Y., Yajnik, S., Liang, Deron, Shih, C., Wang, C.-Y., a
Wang, Y.-M., 1998, ‘‘DCOM and CORBA Side by Side, Step by Step, a
Layer by Layer,’’ C11 Report,10, No. 1, pp. 18–30.

@36# Polze, A., Plakosh, D., and Wallnau, K. C., 1998, ‘‘CORBA in Real-Tim
Settings: A Problem from the Manufacturing Domain,’’ inFirst International
Symposium on Object-Oriented Real-Time Distributed Computing.

@37# Object Management Group, 1999,Real-Time CORBA 1.0 Specification,
ORBOS/99-02, and errata, ORBOS/99-03-29.

@38# Schmidt, D., and Kuhns, F., 2000, ‘‘An Overview of the Real-Time CORB
Specification,’’ IEEE Computer.,33, No. 6, pp. 56–63.

@39# Manufacturing Engineering Partnership~MEDP!, www.mep.nist.gov.
@40# Shackleford, W., and Proctor, F., 2000, ‘‘Use of Open Source Distribution

a Machine Tool Controller, inProceedings of the SPIE Conference on Sens
and Controls for Intelligent Machining, 4191.

@41# Shen, W., and Norrie, D., 1999, ‘‘Agent-Based Systems for Intelligent Ma
facturing: A State-of-the-Art Survey,’’ Int. J. Know. Infor. Syst.,1, No. 2, pp.
129–156.
MARCH 2001, Vol. 1 Õ 99


