

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/software

Portable C/C++ Code for Portable XML Data

Zhaoqing Wang, Zhejiang Sci-Tech University

Harry H. Cheng, University of California, Davis

Vol. 23, No. 1
January/February 2006

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright

holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be

reposted without the explicit permission of the copyright holder.

7 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

technology to perform processing-related
tasks such as parsing, generating, manipulat-
ing, and validating the data.

Application developers commonly use
toolkits based on C/C++, such as Gnome’s
XML C parser and toolkit, Oracle’s XML De-
veloper’s Kit for C/C++ (XDK), and Mi-
crosoft’s XML Parser. These toolkits reflect
the rich set of facilities, data types, operators,
control structures, and runtime library func-
tions that make C/C++ such a popular pro-
gramming language. In fact, these tools, as
well as the large number of skilled C/C++ pro-
grammers, often make C/C++ the preferred
language for building portable systems.

However, C/C++ presents challenges in han-
dling XML data. Even though C standard-con-
forming programs are portable, the compila-
tion process is platform dependent. A C/C++
code needs different compilers on different plat-

forms. The platform compilers handle portabil-
ity issues such as different-sized data types, byte
ordering, and file specification syntax, so truly
portable C/C++ code isn’t typically generated
and executed dynamically. For portability, it
needs a virtual machine or interpreter. This is
why Java and a Java virtual machine are com-
monly used to process XML data.2

Ch is an embeddable C/C++ interpreter for
cross-platform scripting, shell programming,
numerical computing, network computing, and
embedded scripting (see www.softintegration.
com).3,4 It lets applications written in C/C++
run dynamically across multiplatforms, such
as Windows, Mac OS X, Linux, and Unix, with-
out tedious compilation and linking. We used
Ch to develop Ch XML, an open source Ch
package based on Gnome libxml2 (http://
chlibxml2.sourceforge.net) and Oracle XDK for
C/C++ (http://iel.ucdavis.edu/projects/chxml).5

feature
Portable C/C++ Code for
Portable XML Data

X
ML is changing the world of information sharing and exchange
by letting users clearly define their data and documents for spe-
cific tasks, such as electronic data interchange, content manage-
ment, or publishing.1 XML uses context encapsulation to sepa-

rate content from presentation and to support a hierarchical structure
among data from various sources. XML data is reusable, easily derivable,
and reconfigurable. However, XML-based applications need a programming

portable code

Zhaoqing Wang, Zhejiang Sci-Tech University

Harry H. Cheng, University of California, Davis

Ch XML packages
integrate an
embeddable
C-compatible
interpreter with
XML C/C++
toolkits—giving
developers the
option of using
portable C/C++
scripts to process
portable XML data.

The Ch XML for these toolkits is designed to
integrate portable XML data with portable
C/C++ scripting code. Here we use Gnome
libxml2 to discuss the integration, but the ideas
presented also apply to the Ch XML package
for Oracle’s XDK. Our packages also let many
existing applications and technologies based on
C/C++ work seamlessly with XML documents
through a network. We illustrate Ch XML’s ap-
plication potential in network computing.

Script computing for XML
XML application designers often use a two-

or three-tiered architecture to facilitate develop-
ment. They implement the application logic us-
ing XSL stylesheets and the lower-level compo-
nents using a scripting language such as Python,
Tcl, PHP, or Perl. Scripting languages are ideal
for portable application development and sys-
tem integration.6 The lowest-level components,
including an XML parser, are implemented us-
ing a system language such as C or C++.

Gnome libxml2 is a high-performance, widely
used XML C parser and toolkit for the Gnome
project. It can also perform WXS (W3C XML
Schema) schema validation and Relax-NG val-
idation, and most scripting languages include
modules to interface with it. For example, the
Libxml2-Python package contains a module that
lets applications written in the Python scripting
language use the Gnome libxml2 library to ma-
nipulate XML files (see http://rpmfind.net/linux/
rpm2html/search.php?query=libxml2-python).
TclXML (http://sourceforge.net/projects/tclxml)
is a package for parsing XML documents us-
ing the Tcl scripting language; it provides a
wrapper for libxml2. PHP-libxml2 is an im-
plementation of a PHP binding to libxml2 (see
www.zend.com/php5/articles/php5-xmlphp.
php#Heading4), and libXML-Perl is a Perl bind-
ing to it (see http://perl-xml.sourceforge.net).

The Ch interpreter provides the basis for
portable processing of XML data in C/C++ and
easy integration with legacy applications. The
Ch interpreter supports all features in the ISO
1990 C standard and most new features added
in the ISO C99, such as complex numbers, vari-
able-length array, binary constants, and IEEE
754 floating-point arithmetic. Ch also supports
classes, objects, and encapsulation in C++ for
object-based programming. As a superset of C,
all existing C libraries and modules can be part
of the Ch libraries. So, Ch libraries’ potential is
almost unlimited. Ch supports Posix, TCP/IP

socket, Winsock, Win32, X11/Motif, GTK+,
OpenGL, open database connectivity, Lapack,
the Lightweight Directory Access Protocol, the
Numerical Algorithms Group’s statistics li-
brary, Intel OpenCV for computer vision, Im-
ageMagick for image processing, and National
Instrument’s NI-DAQ and NI-Motion.

Ch is especially suitable for Web-based ap-
plications. With development modules, such
as classes for a common gateway interface
(CGI) to Web servers, Ch allows rapid devel-
opment and deployment of Web-based appli-
cations and services. For example, Harry
Cheng and his colleagues have developed an
open source Web-based system for control sys-
tem design and analysis in Ch, Ch CGI, and
the open source Ch Control System Toolkit.7

Integrating Gnome libxml2 with Ch
A key Ch feature is the Ch Software Devel-

oper’s Kit (www.softintegration.com/docs) in-
cluded in the distribution. Ch SDK makes it
easy to integrate binary static or dynamic
C/C++ libraries with the language environment
without recompilation. The SDK creates an in-
terface between scripting code and the binary
static or dynamic C/C++ libraries. The inter-
face interprets the scripting application code
and calls the corresponding library functions.

The Ch libxml2 package consists of mainly
two parts—the chf (Ch function) and a dy-
namically loaded library. Applications call the
chf files directly using libxml2 library func-
tions. The dynamically loaded library is devel-
oped in C/C++ and contains interface functions
that the Ch functions call. It’s also linked to the
binary libraries with libxml2 functions. The
Ch space refers to the code for a user applica-
tion program in scripting mode. The C space
refers to the code in the dynamically loaded li-
brary and binary libraries in binary mode.

The representation of code and parameters
differs between the Ch and C spaces. The Ch
wrapper, which consists of components in
both Ch and C spaces, acts as the broker be-
tween the Ch space and C space, transferring
the code and argument value. In the following
sections, we describe how to create a Ch
wrapper to make the barrier transparent be-
tween the user’s application in the Ch space
and the dynamic library in the C space.

Based on the function argument type, three
types of functions exist in libxml2. The first
one is a regular function without an argument

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 7 7

The Ch
interpreter
provides the

basis for
portable

processing of
XML data in

C/C++ and easy
integration
with legacy

applications.

type of pointer to function. The second one is
a function with an argument type of pointer to
the user-defined callback function. A function
in the libxml2 library in the C space might in-
voke the callback function in the Ch space.
The third one is a function with an argument
type of pointer to the system’s predefined call-
back function. A function in an application
program in the Ch space might invoke the pre-
defined callback function in the C space.

Integration without callback functions
The XML Document Object Model API

creates a tree structure in memory to store the
XML document’s data. Typically, a DOM-
based XML C/C++ application has no call-
back functions. It’s relatively simple to create
a Ch binding to those libxml2 APIs that have
no callback functions.

Figure 1 illustrates the basic execution pro-
cedures of an application through the Ch wrap-
per. The architecture consists of three layers:

■ the user’s applications, which are the exist-
ing applications using the XML C functions;

■ the Ch wrapper, which is the broker be-
tween the binary functions and text-based
interpretive functions; and

■ the original C/C++ binary libraries pro-
vided by Gnome libxml2.

In figure 1, the modules in the upper part are
in the Ch space, and those in the lower part
are in the C space.

With the Ch binding for Gnome libxml2, we
can interpretively execute the user applications
without compilation across platforms. When

an XML application calls an XML function,
the program calls the XML-Ch function. This
function typically invokes the XML Ch inter-
face function (chdl) in a dynamically loaded li-
brary, which in turn calls the corresponding bi-
nary function in the libxml2 library.

For example, an application program gjo-
bread.c uses function xmlParseFile()
with an argument of the file name to be
passed. When gjobread.c launches, it loads
the Ch function file xmlParseFile.chf for
function xmlParserFile(). The function
in the Ch function file invokes the binary in-
terface function xmlParseFile_chdl()
through the dynamically loaded library,
which in turn calls the existing binary func-
tion xmlParseFile() provided in libxml2.
In this case, xmlParseFile.chf is an element in
the intersection of the Ch space and Ch
wrapper, and xmlParseFile_chdl() in
the dynamically loaded library is in the in-
tersection of the C space and Ch wrapper.
Function dlrunfun() in a Ch function file
invokes the interface function in the C space.
The Ch wrapper functions act as a broker
between the Ch and C spaces.

Integration with registered callback functions
The Simple API for XML (SAX) uses an

event-based model to process XML documents.
A SAX-based parser invokes functions in C
when it encounters a markup, such as a start or
end tag. The SAX application defines the call-
back functions for the XML document. The Ch
wrapper provides the registration for this kind
of callback function, as figure 2a shows.

When an application calls a function with
an argument of pointer to a user-defined func-
tion (callback function) in the Ch space, the
application passes the callback function’s ad-
dress to the Ch function as an argument of the
function. However, the callback function
should be registered in the Ch wrapper. The Ch
function passes this address to the interface
function in the C space to register this callback
function in the Ch wrapper. When an event is
encountered, the XML binary library function
will call this callback function using the regis-
tered function we added to the C space. This
function invokes the callback function in the
Ch space using the Ch SDK API Ch_Call-
FuncByName() or Ch_CallFuncByAddr().

For example, a SAX program testSAX.c con-
tains the function xmlSAXUserParseFile()

7 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Ch space

C space

XML C/C++ application

XML-Ch function

XML Ch dynamically loaded library

XML C/C++ binary library

Wrapper

Figure 1. Integration of
a general API with Ch.

with the following function prototype:

int xmlSAXUserParseFile
(xmlSAXHandlerPtr sax, void
*user_data, const char *filename)

The first argument of type xmlSAXHan-
dlerPtr, pointer to structure, has member
fields of pointer to function, such as start-
Document(), in the Ch space. The callback
function startDocument_chdl_funarg() in
the C space in this example invokes the callback
function startDocument() using SDK function
Ch_CallFuncBy Addr() when it encounters
the “start a document” event. The interface func-
tion xmlSAX UserParseFile_chdl(), which
function dlrunfun() invokes in the Ch space,
calls function xmlSAXUserParseFile()in the
libxml2 binary library.

Integration with system default registered
functions

The encoding module inibxml2 has APIs
such as xmlFindCharEncodingHandler()
to search for a registered handler to read and
write the corresponding encoding. The regis-
tered handler can be a system default function
or user-defined callback function. After the
module obtains the handler, an application
program in the Ch space calls the handler. If
the handler is in the Ch space, it’s easy to use,
because the user-defined function handler will
run in the same space as the user application.

However, if the handler is in the C space,
the system default callback function in the C
space, shown as default_callback_func()
in figure 2b, must run in the Ch space. To
invoke default_callback_func() from
the Ch space, the applications will call func-
tion default_callback_ch() using function
dlrunfun(). This is similar to the situation
described earlier (without callback func-
tions), when a typical function in the C space
ran in the Ch space. The only difference is
that the return value of a function with a de-
fault system callback function, such as
xmlFindCharEncodingHandler(), should
be the pointer to default_callback_ch()
in the Ch space instead of the pointer to
default_callback_func() in the C space.

For example, the testWriter.c demo program
first uses function call xmlFindCharEncod-
ingHandler(encoding) to get the encoding
handler. The handler is then called in the Ch

space. The handler can be either in the Ch or C
space. If the handler is in the C space, a callback
function, similar to default_callback_ch(),
is preloaded through a header file in the Ch
space. It then invokes the system’s predefined
callback function similar to default_call-
back_func() in the C space. Function call
xmlFindCharEncodingHandler(encoding)

returns the callback function’s address in the Ch
space. Similar to the case without the callback
function, an interface function default_call-
back_chdl() invokes the binary function
default_callback_func() provided in
libxml2 for the corresponding Ch function
default_callback_ch(), as figure 2b shows.

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 7 9

Ch space

C space

XML C/C++ application

User’s callback function

XML-Ch function

XML Ch dynamically loaded library

XML C/C++ binary library

Wrapper

Callback

(a)

Ch space

C space

XML C/C++ application

User’s callback function

XML-Ch function
(default_callback_ch)

XML Ch dynamically loaded library
(default_callback_chdl)

XML C/C++ binary library
(default_callback_func)

Default system
callback

Wrapper

Callback

(b)

Figure 2. (a) The
architecture for
integrating the Simple
API for XML with
callback functions in
Ch; (b) the architecture
for integrating an API
with a system default
callback function.

8 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Application examples
The Gnome libxml2 XML C parser and

toolkit package provides several C demo pro-
grams for processing XML documents. Figure
3a shows the interactive execution of the C pro-
gram gjobread.c in a Ch command shell. The
program handles the Gnome XML format for
job descriptions. It parses the XML data file
gjobs.xml and prints out the content informa-
tion about jobs. Typing a file name in a com-
mand shell causes gjobread.c to execute and
displays the output, as shown in figure 3a. The
result is the same as the output of the compiled
binary executable program gjobread.exe. We
can also execute gjobread.c from a Ch-compat-
ible integrated development environment. Sev-
eral IDEs, such as ChSciTE, are readily avail-
able for editing and running Ch programs.

XML documents are widely used for Web-
based application and integration. Like Perl,
Python, or PHP, interpretive C scripts can be
used in Ch to create dynamic Web pages. The Ch
CGI Toolkit (www.softintegration.com/products/
toolkit/cgi) contains four classes—Request, Re-
sponse, Server, and Cookie—with APIs similar to
ActiveServer Pages and JavaServer Pages. For a
Web-based application, Ch CGI scripts typically
have the “.ch” file extension. For example, with
a proper Web server setup, we can launch the
program gjobread.ch by clicking on a Web
browser’s hyperlink. The program can print out
and display its results inside the Web browser.

Figure 4 shows a demo page for a Web-based
application using the Ch XML package. The
“run gjobread.c” link executes a CGI demo pro-
gram. The CGI program gjobread.ch is modi-
fied from the original C program gjobread.c,
adding the following CGI code to display the
output as plain text in a Web browser:

class CResponse Response;

Response.setContentType(“text/

plain”);

Response.begin();

...

Response.end();

Figure 3. (a) Execution results of the C
program gjobread.c and binary executable
gjobread.exe; (b) output from executing the
C program gjobread.ch through the Internet.

(a)

(b)

Figure 4. The Ch XML demo Web page for
Gnome libxml2.

The output is the same whether we execute the
program in a Ch command shell or in a CGI-
based Web page (see figure 3b).

If we embed Ch as a scripting engine in an
application program, the program can process
XML documents using C scripts that the applica-
tion program dynamically controls. Using a Ch
XML package, we can easily process portable
XML data in mobile code or mobile agents in
various network-based applications.8 As a simple
example, in the C/C++ code fragment shown in
figure 5, Ch is embedded as a scripting engine.

The program initializes an embedded Ch inter-
preter interp using function Ch_Initialize().
The application then runs C script gjobread.c
through function Ch_RunScript(). Finally, func-
tion Ch_End() releases the interpreter. The mobile
code using XML functions can also be generated
dynamically and sent through the network. It can
process XML documents using a Ch XML pack-
age and access a database using open database
connectivity. The script can also invoke functions
or classes in the binary host application program.

T he example applications show the po-
tential for using Ch XML in applica-
tions that need dynamically executable

codes to process dynamic XML data. Because
Ch is an embeddable C/C++ interpreter, applica-
tions—especially those developed in C/C++—
can embed Ch as a scripting engine to process
portable XML documents using portable C/C++
scripts through the Internet. Scripting in C/C++
for processing XML data is ideal for rapid pro-
totyping,9 Web-based applications,7 mobile com-
puting,8 and teaching and learning XML.

References
1. R. Vidgen and S. Goodwin, “XML: What Is It Good

For?” Computing & Control Eng. J., vol. 11 , no. 3,
2000, pp. 119–124.

2. J.P. Morgenthal, “Portable Data / Portable Code: XML

& Java Technologies,” white paper, Sun Microsystems,
2003, http://java.sun.com/xml/ncfocus.html.

3. H.H. Cheng, “Scientific Computing in the Ch Program-
ming Language,” Scientific Programming, vol. 2, no. 3,
1993, pp. 49–75.

4. H.H. Cheng, “Ch: A C/C++ Interpreter for Script Com-
puting,” C/C++ User’s J., vol. 24, no. 1, 2006, pp. 6–12.

5. Z. Wang and H.H. Cheng, Integrating Portable XML Data
with Portable C/C++ Code, tech. report, Oracle, 2004;
www.oracle.com/technology/pub/articles/wang_ch.html.

6. J. K. Ousterhout, “Scripting: Higher-level Programming
for the 21st Century,” Computer, vol. 31, no. 3, 1998,
pp. 23–30.

7. Q. Yu, B. Chen, and H.H. Cheng, “Web-Based Control
System Design and Analysis,” IEEE Control Systems
Magazine, vol. 24, no. 3, 2004, pp. 45–57.

8. B. Chen and H.H. Cheng, “A Run-Time Support Envi-
ronment for Mobile Agents,” Proc. ASME/IEEE Int’l
Conf. Mechatronic and Embedded Systems and Appli-
cations, CD-ROM, paper #DETC2005-85389, 2005.

9. B. Chen and H.H. Cheng, “Interpretive OpenGL for
Computer Graphics,” Computers and Graphics, vol.
29, no. 2, 2005, pp. 331–339.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 8 1

Figure 5. Embedding Ch in the C/C++ code as a scripting engine.

#include <embedch.h> // header file for Embedded Ch
ChInterp_t interp;

char *argvv[] = {“gjobread.c”, NULL}; // argument for a C/C++ script
Ch_Initialize(&interp, NULL); // initialize an embedded Ch
Ch_RunScript(interp, argvv); // run an Embedded C/C++ script indicated by argvv
….
Ch_End(interp); // release memory and terminate the interpreter

About the Authors

Zhaoqing Wang is an associate professor and the director of the Instructional Division for
Computing Technology in the Zhejiang Sci-Tech University, Zhejiang, China. His research interests
include network computing, engineering software design, real-time and embedded control sys-
tems, XML data processing, Web technology, and Ch and its applications. He received his PhD in
electrical engineering from the Shanghai Jiaotong University, Shanghai, and was a post-doctoral
researcher at the University of California, Davis. Contact him at Instructional Division for Comput-
ing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China, 310018; thezqwang@
yahoo.com.

Harry H. Cheng is a professor at the University of California, Davis, and is the director of the
university’s Integration Engineering Laboratory. His research interests include information technol-
ogy, mobile multiagent systems, information-driven systems, design and manufacturing, mechatron-
ics, and intelligent transportation systems. He received his PhD in mechanical engineering from the
University of Illinois at Chicago. He’s a member of the American Society of Mechanical Engineers, the
IEEE, the IEEE Robotics and Automation Society, and the IEEE Computer Society. He holds one US
patent and has published over 110 papers in refereed journals and conference proceedings. Contact
him at the Integration Engineering Laboratory, Dept. Mechanical and Aeronautical Engineering, Univ.
of California, Davis, CA 95616; hhcheng@ucdavis.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

